IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/18114.html
   My bibliography  Save this paper

Heterogeneous Predictive Association of CO2 with Global Warming

Author

Listed:
  • Chen, Liang
  • Dolado, Juan J
  • Gonzalo, Jesus
  • Ramos, Andrey

Abstract

Global warming is a non-uniform process across space and time. This opens the door to a heterogeneous relationship between CO2 and temperature that needs to be analyzed going beyond the standard analysis based on mean temperature found in the literature. We revisit this topic through the lenses of a new class of factor models for high-dimensional panel data, labeled Quantile Factor Models (QFM). This technique extracts quantile-dependent factors from the distributions of temperature across a wide range of stable weather stations in the Northern and Southern Hemispheres over 1959-2018. In particular, we test whether the (detrended) growth rate of CO2 concentrations help predict the underlying factors of the different quantiles of the distribution of (detrended) temperature in the time dimension. We document that predictive association is greater at the lower and medium quantiles than at the upper quantiles and provide some conjectures about what could be behind this nonuniformity. These findings complement recent results in the literature documenting steeper trends in lower temperature levels than in other parts of the spatial distribution

Suggested Citation

  • Chen, Liang & Dolado, Juan J & Gonzalo, Jesus & Ramos, Andrey, 2023. "Heterogeneous Predictive Association of CO2 with Global Warming," CEPR Discussion Papers 18114, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:18114
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP18114
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gadea Rivas, Marta Dolores, 2022. "Climate change heterogeneity: a new quantitative approach," UC3M Working papers. Economics 35442, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    4. Jiti Gao & Kim Hawthorne, 2006. "Semiparametric estimation and testing of the trend of temperature series," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 332-355, July.
    5. Fei Ji & Zhaohua Wu & Jianping Huang & Eric P. Chassignet, 2014. "Evolution of land surface air temperature trend," Nature Climate Change, Nature, vol. 4(6), pages 462-466, June.
    6. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    7. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    8. Castle, Jennifer L. & Hendry, David F., 2020. "Climate Econometrics: An Overview," Foundations and Trends(R) in Econometrics, now publishers, vol. 10(3-4), pages 145-322, August.
    9. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    10. Martin Leduc & H. Damon Matthews & Ramón de Elía, 2016. "Regional estimates of the transient climate response to cumulative CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 474-478, May.
    11. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    12. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    13. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    14. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Estimating deterministic trends with an integrated or stationary noise component," Journal of Econometrics, Elsevier, vol. 151(1), pages 56-69, July.
    15. Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2020. "A statistical model of the global carbon budget," CREATES Research Papers 2020-18, Department of Economics and Business Economics, Aarhus University.
    16. Drew T. Shindell, 2014. "Inhomogeneous forcing and transient climate sensitivity," Nature Climate Change, Nature, vol. 4(4), pages 274-277, April.
    17. Giselle Montamat & James H. Stock, 2020. "Quasi-experimental estimates of the transient climate response using observational data," Climatic Change, Springer, vol. 160(3), pages 361-371, June.
    18. Francisco Estrada & Pierre Perron & Benjamin Martinez-Lopez, 2013. "Statistically-derived contributions of diverse human influences to 20th century temperature changes," Boston University - Department of Economics - Working Papers Series 2013-017, Boston University - Department of Economics.
    19. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
    20. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Liang & Ramos Ramirez, Andrey David, 2013. "Revisiting Granger Causality of CO2 on Global Warming: a Quantile Factor Approach," DES - Working Papers. Statistics and Econometrics. WS 35531, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    3. C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity," Papers 2406.14145, arXiv.org.
    4. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    5. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    7. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    8. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    9. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    10. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    11. Chen, Liang & Pan, Haozi, 2023. "Estimation of characteristics-based quantile factor models," UC3M Working papers. Economics 37095, Universidad Carlos III de Madrid. Departamento de Economía.
    12. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    13. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    14. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    15. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    16. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    17. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    18. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2021. "Estimating and testing high dimensional factor models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 220(2), pages 349-365.
    19. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    20. Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2014. "Detecting big structural breaks in large factor models," Journal of Econometrics, Elsevier, vol. 180(1), pages 30-48.

    More about this item

    Keywords

    Global warming;

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:18114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.