IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v69y2024ics0275531924000916.html
   My bibliography  Save this article

Return spillover across the carbon market and financial markets: A quantile-based approach

Author

Listed:
  • Wen, Fenghua
  • Wang, Kangsheng
  • Zeng, Aiqing

Abstract

This study examines the dynamic risk contagion between carbon and financial markets in extreme market conditions using a freshly developed methodology for spillovers based on quantile VAR modeling. The empirical results suggest that risk spillovers between them are strengthened in extreme market states and reduce the ability of the carbon market to be used for risk hedging in portfolios. Second, there is heterogeneity in the direction and size of spillovers between carbon and financial markets under bull and bear market conditions. This study also reveals that financial and carbon market participants pay more attention to risk information gathered from left-tail events. Finally, the paper identifies the transmitters and receivers of risk spillovers separately. The stock market is an important source of risks, authorities should pay attention to it.

Suggested Citation

  • Wen, Fenghua & Wang, Kangsheng & Zeng, Aiqing, 2024. "Return spillover across the carbon market and financial markets: A quantile-based approach," Research in International Business and Finance, Elsevier, vol. 69(C).
  • Handle: RePEc:eee:riibaf:v:69:y:2024:i:c:s0275531924000916
    DOI: 10.1016/j.ribaf.2024.102298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531924000916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2024.102298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    2. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    3. Betz, Frank & Hautsch, Nikolaus & Peltonen, Tuomas A. & Schienle, Melanie, 2016. "Systemic risk spillovers in the European banking and sovereign network," Journal of Financial Stability, Elsevier, vol. 25(C), pages 206-224.
    4. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    5. Yadav, Miklesh Prasad & Sharif, Taimur & Ashok, Shruti & Dhingra, Deepika & Abedin, Mohammad Zoynul, 2023. "Investigating volatility spillover of energy commodities in the context of the Chinese and European stock markets," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    7. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    8. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Gabauer, David & Dwumfour, Richard Adjei, 2022. "Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies," Global Finance Journal, Elsevier, vol. 51(C).
    9. Oestreich, A. Marcel & Tsiakas, Ilias, 2015. "Carbon emissions and stock returns: Evidence from the EU Emissions Trading Scheme," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 294-308.
    10. Harrison Hong & Jeremy C. Stein, 2003. "Differences of Opinion, Short-Sales Constraints, and Market Crashes," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 487-525.
    11. Mensi, Walid & Hammoudeh, Shawkat & Al-Jarrah, Idries Mohammad Wanas & Sensoy, Ahmet & Kang, Sang Hoon, 2017. "Dynamic risk spillovers between gold, oil prices and conventional, sustainability and Islamic equity aggregates and sectors with portfolio implications," Energy Economics, Elsevier, vol. 67(C), pages 454-475.
    12. Yan, Yumeng & Xiong, Xiong & Li, Shuo & Lu, Lei, 2022. "Will temperature change reduce stock returns? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 81(C).
    13. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    14. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    15. Kocaarslan, Baris & Soytas, Ugur, 2019. "Dynamic correlations between oil prices and the stock prices of clean energy and technology firms: The role of reserve currency (US dollar)," Energy Economics, Elsevier, vol. 84(C).
    16. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    17. Chevallier, Julien, 2011. "Macroeconomics, finance, commodities: Interactions with carbon markets in a data-rich model," Economic Modelling, Elsevier, vol. 28(1), pages 557-567.
    18. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    19. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    20. Brian J. Henderson & Neil D. Pearson & Li Wang, 2015. "Editor's Choice New Evidence on the Financialization of Commodity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1285-1311.
    21. repec:dau:papers:123456789/5111 is not listed on IDEAS
    22. Nguyen, Justin Hung & Phan, Hieu V., 2020. "Carbon risk and corporate capital structure," Journal of Corporate Finance, Elsevier, vol. 64(C).
    23. Zhao, Lili & Wen, Fenghua & Wang, Xiong, 2020. "Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect," Energy Economics, Elsevier, vol. 91(C).
    24. Gennotte, Gerard & Leland, Hayne, 1990. "Market Liquidity, Hedging, and Crashes," American Economic Review, American Economic Association, vol. 80(5), pages 999-1021, December.
    25. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    26. Lundgren, Amanda Ivarsson & Milicevic, Adriana & Uddin, Gazi Salah & Kang, Sang Hoon, 2018. "Connectedness network and dependence structure mechanism in green investments," Energy Economics, Elsevier, vol. 72(C), pages 145-153.
    27. Yinpeng Zhang & Zhixin Liu & Xueying Yu, 2017. "The Diversification Benefits of Including Carbon Assets in Financial Portfolios," Sustainability, MDPI, vol. 9(3), pages 1-13, March.
    28. Hong, Yanran & Li, Pan & Wang, Lu & Zhang, Yaojie, 2023. "New evidence of extreme risk transmission between financial stress and international crude oil markets," Research in International Business and Finance, Elsevier, vol. 64(C).
    29. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    30. Su, Xianfang, 2020. "Measuring extreme risk spillovers across international stock markets: A quantile variance decomposition analysis," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    31. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    32. Liu, Zhenhua & Shi, Xunpeng & Zhai, Pengxiang & Wu, Shan & Ding, Zhihua & Zhou, Yuqin, 2021. "Tail risk connectedness in the oil-stock nexus: Evidence from a novel quantile spillover approach," Resources Policy, Elsevier, vol. 74(C).
    33. Júnior, Gerson de Souza Raimundo & Palazzi, Rafael Baptista & Klotzle, Marcelo Cabus & Pinto, Antonio Carlos Figueiredo, 2020. "Analyzing herding behavior in commodities markets – an empirical approach," Finance Research Letters, Elsevier, vol. 35(C).
    34. Zhou, Yuqin & Liu, Zhenhua & Wu, Shan, 2022. "The global economic policy uncertainty spillover analysis: In the background of COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 61(C).
    35. Wu, Ruirui & Qin, Zhongfeng & Liu, Bing-Yue, 2023. "Connectedness between carbon and sectoral commodity markets: Evidence from China," Research in International Business and Finance, Elsevier, vol. 66(C).
    36. Jonathan Brogaard & Andrew Detzel, 2015. "The Asset-Pricing Implications of Government Economic Policy Uncertainty," Management Science, INFORMS, vol. 61(1), pages 3-18, January.
    37. Piyush Pandey & Sanjay Sehgal, 2018. "Dynamic Currency Linkages and Their Determinants: An Empirical Study for East Asian Economic Community Region," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(7), pages 1538-1556, May.
    38. Jian Chen & Fuwei Jiang & Guoshi Tong, 2017. "Economic policy uncertainty in China and stock market expected returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1265-1286, December.
    39. Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
    40. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    41. Lin, Boqiang & Jia, Zhijie, 2019. "What will China's carbon emission trading market affect with only electricity sector involvement? A CGE based study," Energy Economics, Elsevier, vol. 78(C), pages 301-311.
    42. Laura E. Kodres & Matthew Pritsker, 2002. "A Rational Expectations Model of Financial Contagion," Journal of Finance, American Finance Association, vol. 57(2), pages 769-799, April.
    43. Zhuo Li & Meiyu Tian & Guangda Ouyang & Fenghua Wen, 2021. "Relationship between investor sentiment and earnings news in high‐ and low‐sentiment periods," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2748-2765, April.
    44. Wen, Fenghua & Zhao, Lili & He, Shaoyi & Yang, Guozheng, 2020. "Asymmetric relationship between carbon emission trading market and stock market: Evidences from China," Energy Economics, Elsevier, vol. 91(C).
    45. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    46. Ahmad, Wasim, 2017. "On the dynamic dependence and investment performance of crude oil and clean energy stocks," Research in International Business and Finance, Elsevier, vol. 42(C), pages 376-389.
    47. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Relationship between Carbon, Commodity and Financial Markets: A Copula Analysis," The Economic Record, The Economic Society of Australia, vol. 87(s1), pages 105-124, September.
    48. Oberndorfer, Ulrich, 2009. "Energy prices, volatility, and the stock market: Evidence from the Eurozone," Energy Policy, Elsevier, vol. 37(12), pages 5787-5795, December.
    49. Bouri, Elie & Lei, Xiaojie & Jalkh, Naji & Xu, Yahua & Zhang, Hongwei, 2021. "Spillovers in higher moments and jumps across US stock and strategic commodity markets," Resources Policy, Elsevier, vol. 72(C).
    50. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Sensoy, Ahmet & Kang, Sang Hoon, 2019. "Energy, precious metals, and GCC stock markets: Is there any risk spillover?," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 45-70.
    51. Ren, Yinghua & Tan, Anqi & Zhu, Huiming & Zhao, Wanru, 2022. "Does economic policy uncertainty drive nonlinear risk spillover in the commodity futures market?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    52. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2015. "Is carbon emissions trading profitable?," Economic Modelling, Elsevier, vol. 47(C), pages 84-92.
    53. Maobin Wang & Chun Qiu & Dongmin Kong, 2011. "Corporate Social Responsibility, Investor Behaviors, and Stock Market Returns: Evidence from a Natural Experiment in China," Journal of Business Ethics, Springer, vol. 101(1), pages 127-141, June.
    54. repec:bla:pacecr:v:23:y:2018:i:1:p:8-26 is not listed on IDEAS
    55. Chen, Yangyang & Fan, Qingliang & Yang, Xin & Zolotoy, Leon, 2021. "CEO early-life disaster experience and stock price crash risk," Journal of Corporate Finance, Elsevier, vol. 68(C).
    56. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhigang & Zhang, Weilan, 2024. "Exploring the Spillover effects of tail risk fluctuations in the RMB exchange rate—The time-frequency and quantile connectivity perspective," Research in International Business and Finance, Elsevier, vol. 72(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    2. Man, Yuanyuan & Zhang, Sunpei & He, Yongda, 2024. "Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1397-1416.
    3. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    4. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    5. Dai, Zhifeng & Zhang, Xiaotong & Yin, Zhujia, 2023. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 118(C).
    6. Yang Liu & Xueqing Yang & Mei Wang, 2021. "Global Transmission of Returns among Financial, Traditional Energy, Renewable Energy and Carbon Markets: New Evidence," Energies, MDPI, vol. 14(21), pages 1-32, November.
    7. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    8. Guangxi Cao & Fei Xie, 2024. "Extreme risk spillovers across energy and carbon markets: Evidence from the quantile extended joint connectedness approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2155-2175, April.
    9. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
    10. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Quantile connectedness between energy, metal, and carbon markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    11. Dai, Zhifeng & Zhu, Haoyang, 2023. "Dynamic risk spillover among crude oil, economic policy uncertainty and Chinese financial sectors," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 421-450.
    12. Minggang Wang & Chenyu Hua & Hua Xu, 2022. "Dynamic Linkages among Carbon, Energy and Financial Markets: Multiplex Recurrence Network Approach," Mathematics, MDPI, vol. 10(11), pages 1-23, May.
    13. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    14. Pham, Son D. & Nguyen, Thao T.T. & Do, Hung X., 2024. "Impact of climate policy uncertainty on return spillover among green assets and portfolio implications," Energy Economics, Elsevier, vol. 134(C).
    15. Zhongzheng, Wang, 2023. "Extreme risk transmission mechanism between oil, green bonds and new energy vehicles," Innovation and Green Development, Elsevier, vol. 2(3).
    16. Yang, Ming-Yuan & Chen, Zhanghangjian & Liang, Zongzheng & Li, Sai-Ping, 2023. "Dynamic and asymmetric connectedness in the global “Carbon-Energy-Stock” system under shocks from exogenous events," Journal of Commodity Markets, Elsevier, vol. 32(C).
    17. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Extreme spillovers across Asian-Pacific currencies: A quantile-based analysis," International Review of Financial Analysis, Elsevier, vol. 72(C).
    18. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    19. Karkowska, Renata & Urjasz, Szczepan, 2023. "How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    20. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:69:y:2024:i:c:s0275531924000916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.