Wavelet-RKHS-based functional statistical classification
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-012-0112-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sadanori Konishi, 2004. "Bayesian information criteria and smoothing parameter selection in radial basis function networks," Biometrika, Biometrika Trust, vol. 91(1), pages 27-43, March.
- Yang, Jian-Yi & Yu, Zu-Guo & Anh, Vo, 2009. "Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 607-620.
- Angelini, Claudia & De Canditiis, Daniela & Leblanc, Frédérique, 2003. "Wavelet regression estimation in nonparametric mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 267-291, May.
- Yuko Araki & Sadanori Konishi & Shuichi Kawano & Hidetoshi Matsui, 2009. "Functional regression modeling via regularized Gaussian basis expansions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 811-833, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hidetoshi Matsui & Takamitsu Araki & Sadanori Konishi, 2011. "Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 227-243, July.
- Matsui, Hidetoshi, 2020. "Quadratic regression for functional response models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 125-136.
- Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
- Zhou, Yuan-Wu & Liu, Jin-Long & Yu, Zu-Guo & Zhao, Zhi-Qin & Anh, Vo, 2014. "Fractal and complex network analyses of protein molecular dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 21-32.
- Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.
- Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
- Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
- Mariola Sánchez-González & María Durbán & Dae-Jin Lee & Isabel Cañellas & Hortensia Sixto, 2017. "Smooth additive mixed models for predicting aboveground biomass," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 23-41, March.
- Han Shang, 2014.
"A survey of functional principal component analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Han Lin Shang, 2011. "A survey of functional principal component analysis," Monash Econometrics and Business Statistics Working Papers 6/11, Monash University, Department of Econometrics and Business Statistics.
- Ruiz-Medina, María D. & Álvarez-Liébana, Javier, 2019. "Strongly consistent autoregressive predictors in abstract Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 186-201.
- Wang, Fang & Liao, Gui-ping & Li, Jian-hui & Li, Xiao-chun & Zhou, Tie-jun, 2013. "Multifractal detrended fluctuation analysis for clustering structures of electricity price periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5723-5734.
- Masao Ueki & Kaoru Fueda, 2010. "Optimal tuning parameter estimation in maximum penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 413-438, June.
- Tomohiro Ando & Sadanori Konishi, 2009. "Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 331-353, June.
- Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
- Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.
- Duchwan Ryu & Devrim Bilgili & Önder Ergönül & Faming Liang & Nader Ebrahimi, 2018. "A Bayesian Generalized Linear Model for Crimean–Congo Hemorrhagic Fever Incidents," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 153-170, March.
- Kun Huang & Sijie Zheng & Lijian Yang, 2022. "Inference for dependent error functional data with application to event-related potentials," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1100-1120, December.
More about this item
Keywords
Functional data analysis; Gene expression profiles; Penalized logistic regression; Reproducing kernel Hilbert space; Wavelet decomposition; Yeast cell cycle; 62J12; 60G15;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:3:p:201-217. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.