Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation
Author
Abstract
Suggested Citation
DOI: 10.1515/ijb-2019-0120
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Georges Bresson & Anoop Chaturvedi & Mohammad Arshad Rahman & Shalabh, 2020. "Seemingly Unrelated Regression with Measurement Error: Estimation via Markov chain Monte Carlo and Mean Field Variational Bayes Approximation," Papers 2006.07074, arXiv.org.
References listed on IDEAS
- Shalabh, 2003. "Consistent estimation of coefficients in measurement error models with replicated observations," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 227-241, August.
- van Dyk, David A. & Park, Taeyoung, 2008. "Partially Collapsed Gibbs Samplers: Theory and Methods," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 790-796, June.
- Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
- Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Linde, 2014. "The deviance information criterion: 12 years on," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 485-493, June.
- Faes, C. & Ormerod, J. T. & Wand, M. P., 2011. "Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 959-971.
- Chan, Joshua C.C. & Grant, Angelia L., 2016.
"Fast computation of the deviance information criterion for latent variable models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Fast Computation of the Deviance Information Criterion for Latent Variable Models," CAMA Working Papers 2014-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
- W.E. Griffiths & Ma. Rebecca Valenzuela, 2004. "Gibbs Samplers for a Set of Seemingly Unrelated Regressions," Department of Economics - Working Papers Series 912, The University of Melbourne.
- Cheng, C.-L. & Shalabh, & Garg, G., 2014. "Coefficient of determination for multiple measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 137-152.
- Raymond J. Carroll & Douglas Midthune & Laurence S. Freedman & Victor Kipnis, 2006. "Seemingly Unrelated Measurement Error Models, with Application to Nutritional Epidemiology," Biometrics, The International Biometric Society, vol. 62(1), pages 75-84, March.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Dale J. Poirier & Gary Koop & Justin Tobias, 2005.
"Semiparametric Bayesian inference in multiple equation models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 723-747.
- Koop, Gary M & Poirier, Dale J & Tobias, Justin, 2005. "Semiparametric Bayesian Inference in Multiple Equation Models," Staff General Research Papers Archive 12009, Iowa State University, Department of Economics.
- Griffiths, William E & Chotikapanich, Duangkamon, 1997. "Bayesian Methodology for Imposing Inequality Constraints on a Linear Expenditure System with Demographic Factors," Australian Economic Papers, Wiley Blackwell, vol. 36(69), pages 321-341, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016.
"Large Bayesian VARMAs,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
- Joshua C C Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Papers 1409, University of Strathclyde Business School, Department of Economics.
- Joshua C.C. Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Paper series 40_14, Rimini Centre for Economic Analysis.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2014. "Large Bayesian VARMAs," SIRE Discussion Papers 2015-06, Scottish Institute for Research in Economics (SIRE).
- Joshua Chan & Eric Eisenstat & Gary Koop, 2015. "Large Bayesian VARMAs," Working Paper series 15-36, Rimini Centre for Economic Analysis.
- Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
- Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
- Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
- Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
- Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
- Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
- Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
- Muhammed Semakula & Franco̧is Niragire & Christel Faes, 2020. "Bayesian spatio-temporal modeling of malaria risk in Rwanda," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
- Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
- Chamberlain Mbah & Kris Peremans & Stefan Van Aelst & Dries F. Benoit, 2019. "Robust Bayesian seemingly unrelated regression model," Computational Statistics, Springer, vol. 34(3), pages 1135-1157, September.
- Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
- Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020.
"Business cycle dynamics after the Great Recession: An extended Markov-Switching Dynamic Factor Model,"
OECD Statistics Working Papers
2020/01, OECD Publishing.
- Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," Working Papers halshs-02443364, HAL.
- Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," PSE Working Papers halshs-02443364, HAL.
- Pedro Saramago & Karl Claxton & Nicky J. Welton & Marta Soares, 2020. "Bayesian econometric modelling of observational data for cost‐effectiveness analysis: establishing the value of negative pressure wound therapy in the healing of open surgical wounds," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1575-1593, October.
More about this item
Keywords
classical measurement error; Markov chain Monte Carlo (MCMC); mean field variational Bayes; reliability ratio; seemingly unrelated regression; systolic blood pressure;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:17:y:2021:i:1:p:75-97:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.