IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v199y2024ics0047259x23000799.html
   My bibliography  Save this article

Tests for group-specific heterogeneity in high-dimensional factor models

Author

Listed:
  • Djogbenou, Antoine
  • Sufana, Razvan

Abstract

Standard high-dimensional factor models assume that the comovements in a large set of variables could be modeled using a small number of latent factors that affect all variables. In many relevant applications in economics and finance, heterogeneous comovements specific to some known groups of variables naturally arise, and reflect distinct cyclical movements within those groups. This paper develops two new statistical tests that can be used to investigate whether there is evidence supporting group-specific heterogeneity in the data. The paper also proposes and proves the validity of a permutation approach for approximating the asymptotic distributions of the two test statistics.

Suggested Citation

  • Djogbenou, Antoine & Sufana, Razvan, 2024. "Tests for group-specific heterogeneity in high-dimensional factor models," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000799
    DOI: 10.1016/j.jmva.2023.105233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    2. Kahle, Kathleen M. & Walkling, Ralph A., 1996. "The Impact of Industry Classifications on Financial Research," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(3), pages 309-335, September.
    3. Kathleen M. Kahle & Ralph A. Walkling, "undated". "The Impact of Industry Classifications on Financial Research," Research in Financial Economics 9607, Ohio State University.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    6. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    7. Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.
    8. Antoine A. Djogbenou, 2020. "Comovements in the real activity of developed and emerging economies: A test of global versus specific international factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 344-370, April.
    9. Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
    10. Mr. Marco Del Negro & Mr. Robin Brooks, 2005. "A Latent Factor Model with Global, Country, and Industry Shocks for International Stock Returns," IMF Working Papers 2005/052, International Monetary Fund.
    11. Karel Hrazdil & Thomas Scott, 2013. "The role of industry classification in estimating discretionary accruals," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 15-39, January.
    12. Jesse Hemerik & Jelle Goeman, 2018. "Exact testing with random permutations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 811-825, December.
    13. Yong He & Xinbing Kong & Long Yu & Xinsheng Zhang, 2022. "Large-Dimensional Factor Analysis Without Moment Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 302-312, January.
    14. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015. "What Drives Oil Prices? Emerging Versus Developed Economies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
    15. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    16. Antoine A. Djogbenou, 2021. "Model selection in factor-augmented regressions with estimated factors," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 470-503, April.
    17. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    18. Antoine Djogbenou & Silvia Gonçalves & Benoit Perron, 2015. "Bootstrap inference in regressions with estimated factors and serial correlation," CIRANO Working Papers 2015s-20, CIRANO.
    19. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    20. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine A. Djogbenou, 2020. "Comovements in the real activity of developed and emerging economies: A test of global versus specific international factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 344-370, April.
    2. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    3. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    4. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    5. repec:dau:papers:123456789/11663 is not listed on IDEAS
    6. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    7. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    8. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    9. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    10. repec:cte:wsrepe:23974 is not listed on IDEAS
    11. repec:cte:wsrepe:27047 is not listed on IDEAS
    12. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    13. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    14. Mikkelsen, Jakob Guldbæk & Hillebrand, Eric & Urga, Giovanni, 2019. "Consistent estimation of time-varying loadings in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 208(2), pages 535-562.
    15. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    16. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    17. Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.
    18. González-Rivera, Gloria & Maldonado, Javier & Ruiz, Esther, 2019. "Growth in stress," International Journal of Forecasting, Elsevier, vol. 35(3), pages 948-966.
    19. Derek Bunn, Julien Chevallier, Yannick Le Pen, and Benoit Sevi, 2017. "Fundamental and Financial Influences on the Co-movement of Oil and Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    20. Martin Solberger & Erik Spånberg, 2020. "Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 875-900, March.
    21. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    22. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    23. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.