My bibliography
Save this item
Combination forecasts of output growth in a seven-country data set
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015.
"Dynamic predictive density combinations for large data sets in economics and finance,"
Working Paper
2015/12, Norges Bank.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2016. "Dynamic Predictive Density Combinations for Large Data Sets in Economics and Finance," Tinbergen Institute Discussion Papers 15-084/III, Tinbergen Institute, revised 03 Jul 2017.
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Aikman, David & Kiley, Michael & Lee, Seung Jung & Palumbo, Michael G. & Warusawitharana, Missaka, 2017.
"Mapping heat in the U.S. financial system,"
Journal of Banking & Finance, Elsevier, vol. 81(C), pages 36-64.
- David Aikman & Michael T. Kiley & Seung Jung Lee & Michael G. Palumbo & Missaka Warusawitharana, 2015. "Mapping Heat in the U.S. Financial System," Finance and Economics Discussion Series 2015-59, Board of Governors of the Federal Reserve System (U.S.).
- Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
- Carlo Altavilla & Matteo Ciccarelli, 2006.
"Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area,"
Discussion Papers
7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Matteo Ciccarelli & Carlo Altavilla, 2007. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro area," 2007 Meeting Papers 315, Society for Economic Dynamics.
- Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Inflation Forecasts, monetary policy and unemployment dynamics: evidence from the US and the euro area," Working Paper Series 725, European Central Bank.
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Carlo Altavilla & Matteo Ciccarelli, 2011.
"Monetary Policy Analysis in Real-Time. Vintage combination from a real-time dataset,"
CSEF Working Papers
274, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
- Anna Gloria Billé & Alessio Tomelleri & Francesco Ravazzolo, 2023.
"Forecasting regional GDPs: a comparison with spatial dynamic panel data models,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 18(4), pages 530-551, October.
- Anna Gloria Billé & Alessio Tomelleri & Francesco Ravazzolo, 2021. "Forecasting Regional GDPs: a Comparison with Spatial Dynamic Panel Data Models," FBK-IRVAPP Working Papers 2021-02, Research Institute for the Evaluation of Public Policies (IRVAPP), Bruno Kessler Foundation.
- Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
- Eickmeier, Sandra & Ng, Tim, 2011.
"Forecasting national activity using lots of international predictors: An application to New Zealand,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
- Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511.
- Eickmeier, Sandra & Ng, Tim, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Discussion Paper Series 1: Economic Studies 2009,11, Deutsche Bundesbank.
- Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
- Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
- Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
- Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018.
"Using the Entire Yield Curve in Forecasting Output and Inflation,"
Econometrics, MDPI, vol. 6(3), pages 1-27, August.
- Tae-Hwy Lee & Eric Hillebrand & Huiyu Huang & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Working Papers 201903, University of California at Riverside, Department of Economics.
- Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017.
"Forecasting GDP with global components: This time is different,"
International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
- Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Papers No 1/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Paper 2015/05, Norges Bank.
- Hilde C. Bjornland & Francesco Ravazzolo & Leif Anders Thorsrud, 2016. "Forecasting GDP with global components. This time is different," CAMA Working Papers 2016-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
- Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2024. "Big data financial transactions and GDP nowcasting: The case of Turkey," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 227-248, March.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
- Hansson, Jesper & Jansson, Per & Löf, Mårten, 2003.
"Business Survey Data: Do They Help in Forecasting the Macro Economy?,"
Working Papers
84, National Institute of Economic Research.
- Hansson, Jesper & Jansson, Per & Löf, Mårten, 2003. "Business Survey Data: Do They Help in Forecasting the Macro Economy?," Working Paper Series 151, Sveriges Riksbank (Central Bank of Sweden).
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
- Duncan, Roberto & Martínez-García, Enrique, 2019.
"New perspectives on forecasting inflation in emerging market economies: An empirical assessment,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
- Roberto Duncan & Enrique Martínez García, 2018. "New Perspectives on Forecasting Inflation in Emerging Market Economies: An Empirical Assessment," Globalization Institute Working Papers 338, Federal Reserve Bank of Dallas.
- Garner, Thesia I. & Verbrugge, Randal, 2009. "Reconciling user costs and rental equivalence: Evidence from the US consumer expenditure survey," Journal of Housing Economics, Elsevier, vol. 18(3), pages 172-192, September.
- Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
- Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
- Costantini, Mauro & Cuaresma, Jesus Crespo & Hlouskova, Jaroslava, 2014.
"Can Macroeconomists Get Rich Forecasting Exchange Rates?,"
Economics Series
305, Institute for Advanced Studies.
- Costantini, Mauro & Crespo Cuaresma, Jesus & Hlouskova, Jaroslava, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Department of Economics Working Paper Series 176, WU Vienna University of Economics and Business.
- Jesus Crespo Cuaresma & Mauro Costantini & Jaroslava Hlouskova, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Department of Economics Working Papers wuwp176, Vienna University of Economics and Business, Department of Economics.
- Yan, Xiang & Bai, Jiancheng & Li, Xiafei & Chen, Zhonglu, 2022. "Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures?," Resources Policy, Elsevier, vol. 75(C).
- WAN, Shui-Ki & WANG, Shin-Huei & WOO, Chi-Keung, 2012. "Total tourist arrival forecast: aggregation vs. disaggregation," LIDAM Discussion Papers CORE 2012039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- George Papadopoulos & Savas Papadopoulos & Thomas Sager, 2016. "Credit risk stress testing for EU15 banks: a model combination approach," Working Papers 203, Bank of Greece.
- Carlos Medel, 2017.
"Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy,"
Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
- Carlos Medel, 2016. "Forecasting Chilean Inflation with the Hybrid New Keynesian Phillips Curve: Globalisation, Combination, and Accuracy," Working Papers Central Bank of Chile 791, Central Bank of Chile.
- Medel, Carlos A., 2017. "Forecasting Chilean Inflation with the Hybrid New Keynesian Phillips Curve: Globalisation, Combination, and Accuracy," MPRA Paper 78439, University Library of Munich, Germany.
- Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014.
"An empirical comparison of alternative schemes for combining electricity spot price forecasts,"
Energy Economics, Elsevier, vol. 46(C), pages 395-412.
- Jakub Nowotarski & Eran Raviv & Stefan Trueck & Rafal Weron, 2013. "An empirical comparison of alternate schemes for combining electricity spot price forecasts," HSC Research Reports HSC/13/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
- Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
- Van Robays, Ine & Belu Mănescu, Cristiana, 2014.
"Forecasting the Brent oil price: addressing time-variation in forecast performance,"
Working Paper Series
1735, European Central Bank.
- Cristiana Belu Manescu & Ine Van Robays, 2016. "Forecasting the Brent Oil Price: Addressing Time-Variation in Forecast Performance," CESifo Working Paper Series 6242, CESifo.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Konstantin A. Kholodilin & Boriss Siliverstovs, 2014.
"Business Confidence and Forecasting of Housing Prices and Rents in Large German Cities,"
Discussion Papers of DIW Berlin
1360, DIW Berlin, German Institute for Economic Research.
- Konstantin Kholodilin, 2014. "Business confidence and forecasting of housing prices and rents in large German cities," ERSA conference papers ersa14p9, European Regional Science Association.
- Edda Claus, 2011. "Seven Leading Indexes of New Zealand Employment," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 76-89, March.
- Kilian, Lutz & Baumeister, Christiane & Zhou, Xiaoqing, 2013.
"Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis,"
CEPR Discussion Papers
9572, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Are product spreads useful for forecasting? An empirical evaluation of the Verleger hypothesis," CFS Working Paper Series 2013/09, Center for Financial Studies (CFS).
- Christiane Baumeister & Lutz Kilian & Xiaoqing Zhou, 2013. "Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis," Staff Working Papers 13-25, Bank of Canada.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009.
"Pooling versus model selection for nowcasting with many predictors: An application to German GDP,"
CEPR Discussion Papers
7197, C.E.P.R. Discussion Papers.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
- Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: an application to German GDP," Discussion Paper Series 1: Economic Studies 2009,03, Deutsche Bundesbank.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
- Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
- Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021.
"Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.
- Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2020. "Estimation of High-Dimensional Dynamic Conditional Precision Matrices with an Application to Forecast Combination," Working Papers 202012, University of California at Riverside, Department of Economics.
- Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
- Katja Heinisch & Rolf Scheufele, 2018.
"Bottom-up or direct? Forecasting German GDP in a data-rich environment,"
Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
- Katja Drechsel & Dr. Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
- Drechsel, Katja & Scheufele, Rolf, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7/2013, Halle Institute for Economic Research (IWH).
- Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
- Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012.
"Does Forecast Combination Improve Norges Bank Inflation Forecasts?,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, April.
- Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Does forecast combination improve Norges Bank inflation forecasts?," Working Paper 2009/01, Norges Bank.
- Hilde C. Bjørnland & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud & Christie Smith, 2010. "Does forecast combination improve Norges Bank inflation forecasts?," Working Papers No 2/2010, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-24, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
- Yu-chin Chen & Kwok Ping Tsang & Wen Jen Tsay, 2010. "Home Bias in Currency Forecasts," Working Papers 272010, Hong Kong Institute for Monetary Research.
- Qingfeng Liu & Qingsong Yao & Guoqing Zhao, 2020. "Model averaging estimation for conditional volatility models with an application to stock market volatility forecast," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 841-863, August.
- Wang, Cindy S.H. & Fan, Rui & Xie, Yiqiang, 2023. "Market systemic risk, predictability and macroeconomics news," Finance Research Letters, Elsevier, vol. 56(C).
- Choi, Jin Ho & Suh, Sangwon, 2021. "A filtered currency carry trade," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Mr. Andrew Berg & Mr. Enrico G Berkes & Ms. Catherine A Pattillo & Mr. Andrea F Presbitero & Mr. Yorbol Yakhshilikov, 2014. "Assessing Bias and Accuracy in the World Bank-IMF's Debt Sustainability Framework for Low-Income Countries," IMF Working Papers 2014/048, International Monetary Fund.
- Rossi, Barbara & Sekhposyan, Tatevik, 2014.
"Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
- Barbara Rossi & Tatevik Sehkposyan, 2013. "Evaluating Predictive Densities of US Output Growth and Inflation in a Large Macroeconomic Data Set," Working Papers 689, Barcelona School of Economics.
- Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Hofmann, Boris, 2009.
"Do monetary indicators lead euro area inflation?,"
Journal of International Money and Finance, Elsevier, vol. 28(7), pages 1165-1181, November.
- Hofmann, Boris, 2008. "Do monetary indicators lead euro area inflation?," Working Paper Series 867, European Central Bank.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- A. Surkov A. & А. Сурков А., 2019. "Применение метода попарных сравнений при объединении экономических прогнозов // Application of the Method of Pairwise Comparisons When Combining Economic Forecasts," Учет. Анализ. Аудит // Accounting. Analysis. Auditing, ФГОБУВО "Финансовый университет при Правительстве Российской Федерации" // Financial University under The Government of Russian Federation, vol. 6(3), pages 32-42.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Pablo Pincheira, 2012. "Are Forecast Combinations Efficient?," Working Papers Central Bank of Chile 661, Central Bank of Chile.
- Michiel de Pooter & Francesco Ravazzolo & Dick van Dijk, 2010.
"Term structure forecasting using macro factors and forecast combination,"
Working Paper
2010/01, Norges Bank.
- Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
- Verena Monschang & Bernd Wilfling, 2022. "A procedure for upgrading linear-convex combination forecasts with an application to volatility prediction," CQE Working Papers 9722, Center for Quantitative Economics (CQE), University of Muenster.
- Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014.
"Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
- Rangan Gupta & Shawkat Hammoudeh & Mampho P. Modise & Duc Khuong Nguyen, 2013. "Can Economic Uncertainty, Financial Stress and Consumer Sentiments Predict U.S. Equity Premium?," Working Papers 2013-20, Department of Research, Ipag Business School.
- Rangan Gupta & Shawkat Hammoudeh & Mampho P. Modise & Duc Khuong Nguyen, 2013. "Can Economic Uncertainty, Financial Stress and Consumer Sentiments Predict U.S. Equity Premium?," Working Papers 201351, University of Pretoria, Department of Economics.
- Rangan Gupta & Shawkat Hammoudeh & Mampho P. Modise & Duc Khuong Nguyen, 2014. "Can Economic Uncertainty, Financial Stress and Consumer Senti-ments Predict U.S. Equity Premium?," Working Papers 2014-436, Department of Research, Ipag Business School.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019.
"Statistical and economic evaluation of time series models for forecasting arrivals at call centers,"
Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," MPRA Paper 76308, University Library of Munich, Germany.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," ETA: Economic Theory and Applications 253725, Fondazione Eni Enrico Mattei (FEEM).
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2018. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Papers 1804.08315, arXiv.org.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Working Papers 2017.06, Fondazione Eni Enrico Mattei.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland Institute for Emerging Economies (BOFIT).
- Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010.
"Can Exchange Rates Forecast Commodity Prices?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
- Yu-Chin Chen & Kenneth Rogoff & Barbara Rossi, 2008. "Can Exchange Rates Forecast Commodity Prices?," NBER Working Papers 13901, National Bureau of Economic Research, Inc.
- Kenneth Rogoff & Barbara Rossi & Yu-chin Chen, 2008. "Can Exchange Rates Forecast Commodity Prices?," 2008 Meeting Papers 540, Society for Economic Dynamics.
- Yu-chin Chen & Kenneth Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," Working Papers 10-07, Duke University, Department of Economics.
- Chen, Yu-chin & Rogoff, Kenneth & Rossi, Barbara, 2008. "Can Exchange Rates Forecast Commodity Prices?," Working Papers 08-03, Duke University, Department of Economics.
- Rogoff, Kenneth S. & Chen, Yu-Chin & Rossi, Barbara, 2010. "Can Exchange Rates Forecast Commodity Prices?," Scholarly Articles 29412033, Harvard University Department of Economics.
- Yu-chin Chen & Kenneth Rogoff & Barbara Rossi, 2008. "Can Exchange Rates Forecast Commodity Prices?," Working Papers UWEC-2008-11-FC, University of Washington, Department of Economics, revised Oct 2009.
- Ekaterini Panopoulou, 2006. "The predictive content of financial variables: Evidence from the euro area," The Institute for International Integration Studies Discussion Paper Series iiisdp178, IIIS.
- Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015.
"Optimal combination of survey forecasts,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
- Giannone, Domenico & De Mol, Christine & Conflitti, Cristina, 2012. "Optimal Combination of Survey Forecasts," CEPR Discussion Papers 9096, C.E.P.R. Discussion Papers.
- Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
- Laura Carabotta & Peter Claeys, 2024.
"Combine to compete: Improving fiscal forecast accuracy over time,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 948-982, July.
- Laura Carabotta & Peter Claeys, 2015. "Combine to compete: improving fiscal forecast accuracy over time," UB School of Economics Working Papers 2015/320, University of Barcelona School of Economics.
- Liu, Jingzhen, 2019. "Impacts of lagged returns on the risk-return relationship of Chinese aggregate stock market: Evidence from different data frequencies," Research in International Business and Finance, Elsevier, vol. 48(C), pages 243-257.
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Philippe Goulet Coulombe & Karin Klieber & Christophe Barrette & Maximilian Goebel, 2024. "Maximally Forward-Looking Core Inflation," Papers 2404.05209, arXiv.org.
- Michael S. O’Doherty & N. E. Savin & Ashish Tiwari, 2016. "Evaluating Hedge Funds with Pooled Benchmarks," Management Science, INFORMS, vol. 62(1), pages 69-89, January.
- Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, vol. 24(1), pages 163-169.
- Golinelli, Roberto & Parigi, Giuseppe, 2014.
"Tracking world trade and GDP in real time,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
- Roberto Golinelli & Giuseppe Parigi, 2013. "Tracking world trade and GDP in real time," Temi di discussione (Economic working papers) 920, Bank of Italy, Economic Research and International Relations Area.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Eugster, Patrick & Uhl, Matthias W., 2024. "Forecasting inflation using sentiment," Economics Letters, Elsevier, vol. 236(C).
- Todd E. Clark & Michael W. McCracken, 2009.
"Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
- Todd E. Clark & Michael W. McCracken, 2004. "Improving forecast accuracy by combining recursive and rolling forecasts," Research Working Paper RWP 04-10, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2008. "Improving forecast accuracy by combining recursive and rolling forecasts," Working Papers 2008-028, Federal Reserve Bank of St. Louis.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Andrew Detzel & Jack Strauss, 2018. "Combination Return Forecasts and Portfolio Allocation with the Cross-Section of Book-to-Market Ratios [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1949-1973.
- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011.
"Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria,"
Departmental Working Papers
2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," MPRA Paper 76308, University Library of Munich, Germany.
- Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2014. "Sticky prices or economically-linked economies: The case of forecasting the Chinese stock market," Journal of International Money and Finance, Elsevier, vol. 41(C), pages 95-109.
- Bjørnland, Hilde C. & Gerdrup, Karsten & Jore, Anne Sofie & Smith, Christie & Thorsrud, Leif Anders, 2011.
"Weights and pools for a Norwegian density combination,"
The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 61-76, January.
- Hilde Bjørnland & Karsten Gerdrup & Christie Smith & Anne Sofie Jore & Leif Anders Thorsrud, 2010. "Weights and pools for a Norwegian density combination," Working Paper 2010/06, Norges Bank.
- Weidong Tian & Qing Zhou, 2017. "Asset Pricing Model Uncertainty: A Tradeoff between Bias and Variance," International Review of Finance, International Review of Finance Ltd., vol. 17(2), pages 289-324, June.
- Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- Huisman, Ronald & Van der Sar, Nico L. & Zwinkels, Remco C.J., 2021. "Volatility expectations and disagreement," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 379-393.
- Lombardi, Marco J. & Godbout, Claudia, 2012.
"Short-term forecasting of the Japanese economy using factor models,"
Working Paper Series
1428, European Central Bank.
- Claudia Godbout & Marco J. Lombardi, 2012. "Short-Term Forecasting of the Japanese Economy Using Factor Models," Staff Working Papers 12-7, Bank of Canada.
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-frequency monitoring of growth-at-risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
- Francesca Monti, 2008. "Forecast with judgment and models," Working Paper Research 153, National Bank of Belgium.
- Anthony S. Tay, 2006. "Mixing Frequencies : Stock Returns as a Predictor of Real Output Growth," Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research.
- Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
- Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
- Bastos, Guadalupe & García-Martos, Carolina, 2017. "Electricity prices forecasting by averaging dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS 24028, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
- Schwarzmüller, Tim, 2015. "Model pooling and changes in the informational content of predictors: An empirical investigation for the euro area," Kiel Working Papers 1982, Kiel Institute for the World Economy (IfW Kiel).
- Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010.
"Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
- Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. van Dijk & Marno Verbeek, 2009. "Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights," Tinbergen Institute Discussion Papers 09-061/4, Tinbergen Institute.
- Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. van Dijk & Marno Verbeek, 2009. "Forecast accuracy and economic gains from Bayesian model averaging using time varying weight," Working Paper 2009/10, Norges Bank.
- Tomáš Jeřábek & Jakub Trojan & Radka Šperková, 2013. "Predictive performance of DSGE model for small open economy - the case study of Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(7), pages 2229-2238.
- Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
- Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011.
"Combining VAR and DSGE forecast densities,"
Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
- Ida Wolden Bache & Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2009. "Combining VAR and DSGE forecast densities," Working Paper 2009/23, Norges Bank.
- Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
- Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
- M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006.
"Forecasting Time Series Subject to Multiple Structural Breaks,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
- M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CESifo Working Paper Series 1237, CESifo.
- Pesaran, M. Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," IZA Discussion Papers 1196, Institute of Labor Economics (IZA).
- Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2004. "‘Forecasting Time Series Subject to Multiple Structural Breaks’," Cambridge Working Papers in Economics 0433, Faculty of Economics, University of Cambridge.
- Pesaran, M. Hashem & Timmermann, Allan & Pettenuzzo, Davide, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CEPR Discussion Papers 4636, C.E.P.R. Discussion Papers.
- Travis J. Berge, 2015.
"Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 455-471, September.
- Travis J. Berge, 2013. "Predicting recessions with leading indicators: model averaging and selection over the business cycle," Research Working Paper RWP 13-05, Federal Reserve Bank of Kansas City.
- Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023.
"LASSO principal component averaging: A fully automated approach for point forecast pooling,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
- Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
- Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020.
"Forecasting stock returns: A predictor-constrained approach,"
Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
- Davide Pettenuzzo & Zhiyuan Pan & Yudong Wang, 2017. "Forecasting Stock Returns: A Predictor-Constrained Approach," Working Papers 116R, Brandeis University, Department of Economics and International Business School, revised Feb 2018.
- Davide Pettenuzzo & Zhiyuan Pan & Yudong Wang, 2017. "Forecasting Stock Returns: A Predictor-Constrained Approach," Working Papers 116, Brandeis University, Department of Economics and International Business School.
- M. Hashem Pesaran & Andreas Pick, 2008.
"Forecasting Random Walks Under Drift Instability,"
CESifo Working Paper Series
2293, CESifo.
- M. Hashem Pesaran & Andreas Pick, 2009. "Forecasting Random Walks under Drift Instability," DNB Working Papers 207, Netherlands Central Bank, Research Department.
- Pesaran, M.H. & Pick, A., 2008. "Forecasting Random Walks Under Drift Instability," Cambridge Working Papers in Economics 0814, Faculty of Economics, University of Cambridge.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Edward N. Gamber (CBO), 2017. "Did Treasury Debt Markets Anticipate the Persistent Decline in Long-Term Interest Rates?: Working Paper 2017-07," Working Papers 53153, Congressional Budget Office.
- Ma, Feng & Lu, Fei & Tao, Ying, 2022. "Geopolitical risk and excess stock returns predictability: New evidence from a century of data," Finance Research Letters, Elsevier, vol. 50(C).
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Yu Wei & Lan Bai & Kun Yang & Guiwu Wei, 2021. "Are industry‐level indicators more helpful to forecast industrial stock volatility? Evidence from Chinese manufacturing purchasing managers index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 17-39, January.
- Faias, José Afonso, 2023. "Predicting the equity risk premium using the smooth cross-sectional tail risk: The importance of correlation," Journal of Financial Markets, Elsevier, vol. 63(C).
- Hopp Daniel, 2022. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Journal of Official Statistics, Sciendo, vol. 38(3), pages 847-873, September.
- Chin, Kuo-Hsuan & Li, Xue, 2019. "Bayesian forecast combination in VAR-DSGE models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 278-298.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
- Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
- Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Yiwen (Paul) Dou & David R. Gallagher & David Schneider & Terry S. Walter, 2012. "Out-of-sample stock return predictability in Australia," Australian Journal of Management, Australian School of Business, vol. 37(3), pages 461-479, December.
- Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
- Zvi Schwartz & Timothy Webb & Jean-Pierre I van der Rest & Larissa Koupriouchina, 2021. "Enhancing the accuracy of revenue management system forecasts: The impact of machine and human learning on the effectiveness of hotel occupancy forecast combinations across multiple forecasting horizo," Tourism Economics, , vol. 27(2), pages 273-291, March.
- Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012.
"Reconstructing high dimensional dynamic distributions from distributions of lower dimension,"
Working Papers
12003, Concordia University, Department of Economics.
- Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2013. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers w0167, New Economic School (NES).
- Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2013. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers w0167, Center for Economic and Financial Research (CEFIR).
- Mihaela-Eugenia VASILACHE, 2018. "Forecasting the Trend of Art Market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 6(1), pages 82-93, June.
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
- Andrés M. Alonso & Guadalupe Bastos & Carolina García-Martos, 2016. "Electricity Price Forecasting by Averaging Dynamic Factor Models," Energies, MDPI, vol. 9(8), pages 1-21, July.
- Kirstin Hubrich & Frauke Skudelny, 2017.
"Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
- Kirstin Hubrich & Frauke Skudelny, 2016. "Forecast Combination for Euro Area Inflation - A Cure in Times of Crisis?," Finance and Economics Discussion Series 2016-104, Board of Governors of the Federal Reserve System (U.S.).
- Hubrich, Kirstin & Skudelny, Frauke, 2016. "Forecast combination for euro area inflation: a cure in times of crisis?," Working Paper Series 1972, European Central Bank.
- Georgios Papadopoulos & Dionysios Chionis & Nikolaos P. Rachaniotis, 2018. "Macro-financial linkages during tranquil and crisis periods: evidence from stressed economies," Risk Management, Palgrave Macmillan, vol. 20(2), pages 142-166, May.
- Schanbacher Peter, 2015. "Averaging Across Asset Allocation Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(1), pages 61-81, February.
- Todd E. Clark & Michael W. McCracken, 2010.
"Averaging forecasts from VARs with uncertain instabilities,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
- Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
- Todd E. Clark & Michael W. McCracken, 2006. "Averaging forecasts from VARs with uncertain instabilities," Research Working Paper RWP 06-12, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2008. "Averaging forecasts from VARs with uncertain instabilities," Working Papers 2008-030, Federal Reserve Bank of St. Louis.
- Todd E. Clark & Michael W. McCracken, 2007. "Averaging forecasts from VARs with uncertain instabilities," Finance and Economics Discussion Series 2007-42, Board of Governors of the Federal Reserve System (U.S.).
- Roberto S. Mariano & Suleyman Ozmucur, 2021. "Predictive Performance of Mixed-Frequency Nowcasting and Forecasting Models (with Application to Philippine Inflation and GDP Growth)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 383-400, December.
- Dirk Ulbricht & Konstantin A. Kholodilin & Tobias Thomas, 2017.
"Do Media Data Help to Predict German Industrial Production?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 483-496, August.
- Kholodilin, Konstantin A. & Thomas, Tobias & Ulbricht, Dirk, 2014. "Do media data help to predict German industrial production?," DICE Discussion Papers 149, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Konstantin A. Kholodilin & Tobias Thomas & Dirk Ulbricht, 2014. "Do Media Data Help to Predict German Industrial Production?," Discussion Papers of DIW Berlin 1393, DIW Berlin, German Institute for Economic Research.
- repec:zbw:rwirep:0294 is not listed on IDEAS
- Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2017. "Forecasting economic activity by Bayesian bridge model averaging," Empirical Economics, Springer, vol. 53(1), pages 21-40, August.
- Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022.
"Optimal probabilistic forecasts: When do they work?,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & Rub'en Loaiza-Maya & David T. Frazier & Worapree Maneesoonthorn & Andr'es Ram'irez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Papers 2009.09592, arXiv.org.
- Tao Lin & Yiling Chen, 2022. "Sample Complexity of Forecast Aggregation," Papers 2207.13126, arXiv.org, revised Oct 2023.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
- Tri Minh Phan, 2024. "Sentiment-semantic word vectors: A new method to estimate management sentiment," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 160(1), pages 1-22, December.
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023.
"Commodity futures return predictability and intertemporal asset pricing,"
Journal of Commodity Markets, Elsevier, vol. 31(C).
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2020. "Commodity Futures Return Predictability and Intertemporal Asset Pricing," Working Papers 202011, Geary Institute, University College Dublin.
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
- Camila Figueroa S. & Michael Pedersen, 2019. "A system for forecasting Chilean cash demand – the role of forecast combinations," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 22(2), pages 040-068, August.
- Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014.
"Using large data sets to forecast sectoral employment,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 1106, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working papers 2011-02, University of Connecticut, Department of Economics, revised Aug 2012.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 201101, University of Pretoria, Department of Economics.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Chen, Juan & Ma, Feng & Qiu, Xuemei & Li, Tao, 2023. "The role of categorical EPU indices in predicting stock-market returns," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 365-378.
- Marica Valente & Timm Gries & Lorenzo Trapani, 2023. "Informal employment from migration shocks," Working Papers 2023-09, Faculty of Economics and Statistics, Universität Innsbruck.
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022.
"The illusion of oil return predictability: The choice of data matters!,"
Journal of Banking & Finance, Elsevier, vol. 134(C).
- Thomas Conlon & John Cotter & Emmanuel Eyiah-Donkor, 2022. "The illusion of oil return predictability: The choice of data matters!," Post-Print hal-03519860, HAL.
- Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
- Marie Bessec, 2010.
"Étalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture,"
Économie et Prévision, Programme National Persée, vol. 193(2), pages 77-99.
- Marie Bessec, 2010. "Etalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Economie & Prévision, La Documentation Française, vol. 0(2), pages 77-99.
- Hong, Han & Preston, Bruce, 2012.
"Bayesian averaging, prediction and nonnested model selection,"
Journal of Econometrics, Elsevier, vol. 167(2), pages 358-369.
- Han Hong & Bruce Preston, 2008. "Bayesian Averaging, Prediction and Nonnested Model Selection," NBER Working Papers 14284, National Bureau of Economic Research, Inc.
- Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
- Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
- Darracq Pariès, Matthieu & Maurin, Laurent & Moccero, Diego, 2014. "Financial conditions index and credit supply shocks for the euro area," Working Paper Series 1644, European Central Bank.
- Gupta, Rangan & Jurgilas, Marius & Kabundi, Alain, 2010.
"The effect of monetary policy on real house price growth in South Africa: A factor-augmented vector autoregression (FAVAR) approach,"
Economic Modelling, Elsevier, vol. 27(1), pages 315-323, January.
- Rangan Gupta & Marius Jurgilas & Alain Kabundi, 2009. "The Effect Of Monetary Policy On Real House Price Growth In South Africa: A Factor Augmented Vector Autoregression (Favar) Approach," Working Papers 200905, University of Pretoria, Department of Economics.
- de Pooter, M.D. & Ravazzolo, F. & Segers, R. & van Dijk, H.K., 2008. "Bayesian near-boundary analysis in basic macroeconomic time series models," Econometric Institute Research Papers EI 2008-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Antoine Mandel & Amir Sani, 2016.
"Learning Time-Varying Forecast Combinations,"
Documents de travail du Centre d'Economie de la Sorbonne
16036r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
- Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
- Ekaterina V. Astafyeva & Maria Yu. Turuntseva, 2023. "Analysis of Opportunities to Improve the Quality of Natural Resource Price by Combining Forecasts Resulting from Methods Based on Regression Estimates of Weights [Анализ Возможностей Улучшения Каче," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 24-33, December.
- H. Kent Baker & Satish Kumar & Debidutta Pattnaik, 2021. "Research constituents, intellectual structure, and collaboration pattern in the Journal of Forecasting: A bibliometric analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 577-602, July.
- Ali Babikir & Henry Mwambi, 2016. "Evaluating the combined forecasts of the dynamic factor model and the artificial neural network model using linear and nonlinear combining methods," Empirical Economics, Springer, vol. 51(4), pages 1541-1556, December.
- Patrick T. Kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2016.
"Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation,"
Applied Economics, Taylor & Francis Journals, vol. 48(26), pages 2412-2427, June.
- Pejman Bahramian & Mehmet Balcilar & Rangan Gupta & Patrick T. kanda, 2014. "Forecasting South African Inflation Using Non-Linear Models: A Weighted Loss-Based Evaluation," Working Papers 15-19, Eastern Mediterranean University, Department of Economics.
- Patrick T. kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2014. "Forecasting South African Inflation Using Non-Linear Models: A Weighted Loss-Based Evaluation," Working Papers 201416, University of Pretoria, Department of Economics.
- Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
- Balaguer, Jacint & Ripollés, Jordi, 2024. "Assessing a fuel subsidy: Dynamic effects on retailer pricing and pass-through to consumers," Energy Economics, Elsevier, vol. 138(C).
- Antoine Mandel & Amir Sani, 2017.
"A Machine Learning Approach to the Forecast Combination Puzzle,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01317974, HAL.
- Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
- Bhaghoe, Sailesh & Ooft, Gavin, 2021. "Nowcasting Quarterly GDP Growth in Suriname with Factor-MIDAS and Mixed-Frequency VAR Models," Studies in Applied Economics 176, The Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise.
- Ghani, Usman & Zhu, Bo & Ghani, Maria & Khan, Nasir & khan, Raja Danish Akbar, 2023. "Role of oil shocks in US stock market volatility: A new insight from GARCH-MIDAS perspective," Resources Policy, Elsevier, vol. 85(PB).
- Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
- Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010.
"Combining forecast densities from VARs with uncertain instabilities,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
- Anne-Sofie Jore & James Mitchell & Shaun P. Vahey, 2008. "Combining forecast densities from VARs with uncertain instabilities," Working Paper 2008/01, Norges Bank.
- Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
- Kozyrev, Boris, 2024. "Forecast combination and interpretability using random subspace," IWH Discussion Papers 21/2024, Halle Institute for Economic Research (IWH).
- Garner, Thesia I. & Verbrugge, Randal, 2009.
"Reconciling user costs and rental equivalence: Evidence from the US consumer expenditure survey,"
Journal of Housing Economics, Elsevier, vol. 18(3), pages 172-192, September.
- Randal Verbrugge & Thesia I. Garner, 2009. "Reconciling User Costs and Rental Equivalence: Evidence from the U.S. Consumer Expenditure Survey," Working Papers 427, U.S. Bureau of Labor Statistics.
- Stefan Lyocsa & Peter Molnar & Igor Fedorko, 2016. "Forecasting Exchange Rate Volatility: The Case of the Czech Republic, Hungary and Poland," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 453-475, October.
- Carlos A. Medel & Pablo M. Pincheira, 2016.
"The out-of-sample performance of an exact median-unbiased estimator for the near-unity AR(1) model,"
Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 126-131, February.
- Carlos Medel & Pablo Pincheira, 2015. "The Out-of-Sample Performance of An Exact Median-Unbiased Estimator for the Near-Unity Ar(1)Model," Working Papers Central Bank of Chile 768, Central Bank of Chile.
- Medel, Carlos & Pincheira, Pablo, 2015. "The Out-of-sample Performance of an Exact Median-Unbiased Estimator for the Near-Unity AR(1) Model," MPRA Paper 62552, University Library of Munich, Germany.
- repec:ipg:wpaper:2014-471 is not listed on IDEAS
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
- John W. Galbraith & Greg Tkacz, 2007.
"Forecast content and content horizons for some important macroeconomic time series,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(3), pages 935-953, August.
- John W. Galbraith & Greg Tkacz, 2007. "Forecast content and content horizons for some important macroeconomic time series," Canadian Journal of Economics, Canadian Economics Association, vol. 40(3), pages 935-953, August.
- John W. Galbraith & Greg Tkacz, 2007. "Forecast Content And Content Horizons For Some Important Macroeconomic Time Series," Departmental Working Papers 2007-01, McGill University, Department of Economics.
- David Jamieson Bolder & Yuliya Romanyuk, 2010.
"Combining Canadian Interest Rate Forecasts,"
Palgrave Macmillan Books, in: Arjan B. Berkelaar & Joachim Coche & Ken Nyholm (ed.), Interest Rate Models, Asset Allocation and Quantitative Techniques for Central Banks and Sovereign Wealth Funds, chapter 1, pages 3-30,
Palgrave Macmillan.
- David Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
- Christiane Baumeister & Lutz Kilian, 2014.
"What Central Bankers Need To Know About Forecasting Oil Prices,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
- Kilian, Lutz & Baumeister, Christiane, 2012. "What Central Bankers Need to Know about Forecasting Oil Prices," CEPR Discussion Papers 9118, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2013. "What Central Bankers Need to Know about Forecasting Oil Prices," Staff Working Papers 13-15, Bank of Canada.
- Moramarco, Graziano, 2024.
"Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 777-795.
- Graziano Moramarco, 2021. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," Papers 2111.00822, arXiv.org, revised Jan 2024.
- Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
- Kabukçuoğlu, Ayşe & Martínez-García, Enrique, 2018.
"Inflation as a global phenomenon—Some implications for inflation modeling and forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 46-73.
- Ayse Kabukcuoglu & Enrique Martínez-García, 2015. "Inflation as a Global Phenomenon—Some Implications for Policy Analysis and Forecasting," Koç University-TUSIAD Economic Research Forum Working Papers 1520, Koc University-TUSIAD Economic Research Forum.
- Ayse Kabukcuoglu & Enrique Martínez García, 2016. "Inflation as a global phenomenon - some implications for policy analysis and forecasting," Globalization Institute Working Papers 261, Federal Reserve Bank of Dallas.
- Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- Michael Artis & Toshihiro Okubo, 2010. "The UK intranational business cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 71-93.
- Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova, 2018.
"Exchange rate forecasting and the performance of currency portfolios,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 519-540, August.
- Crespo Cuaresma, Jesus & Fortin, Ines & Hlouskova, Jaroslava, 2017. "Exchange rate forecasting and the performance of currency portfolios," Economics Series 326, Institute for Advanced Studies.
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Helmut Herwartz, 2011. "Specific-to-general predictor selection in approximate autoregressions—Monte Carlo evidence and a large scale performance assessment with real data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 147-168, June.
- Chuanhua Wei & Chenping Du & Nana Zheng, 2020. "A Changing Weights Spatial Forecast Combination Approach with an Application to Housing Price Prediction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(4), pages 1-11, April.
- Rangan Gupta & Faaiqa Hartley, 2013.
"The Role of Asset Prices in Forecasting Inflation and Output in South Africa,"
Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 12(3), pages 239-291, December.
- Rangan Gupta & Faaiqa Hartley, 2011. "The Role of Asset Prices in Forecasting Inflation and Output in South Africa," Working Papers 201115, University of Pretoria, Department of Economics.
- Li, Yan & Liang, Chao & Huynh, Toan Luu Duc, 2022. "Forecasting US stock market returns by the aggressive stock-selection opportunity," Finance Research Letters, Elsevier, vol. 50(C).
- Martin Micheli, 2020. "Local governments’ indebtedness and its impact on real estate prices," Urban Studies, Urban Studies Journal Limited, vol. 57(5), pages 1032-1048, April.
- Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016.
"Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
- Jos Jansen, W. & Jin, Xiaowen & Winter, Jasper M. de, 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," Munich Reprints in Economics 43488, University of Munich, Department of Economics.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
- Kapetanios, George & Labhard, Vincent & Price, Simon, 2006.
"Forecasting using predictive likelihood model averaging,"
Economics Letters, Elsevier, vol. 91(3), pages 373-379, June.
- George Kapetanios & Vincent Labhard & Simon Price, 2006. "Forecasting Using Predictive Likelihood Model Averaging," Working Papers 567, Queen Mary University of London, School of Economics and Finance.
- Donghua Wang & Yang Xin & Xiaohui Chang & Xingze Su, 2021. "Realized volatility forecasting and volatility spillovers: Evidence from Chinese non‐ferrous metals futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2713-2731, April.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020.
"A Scoring Rule for Factor and Autoregressive Models Under Misspecification,"
Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," International Association of Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Domenico Sartore, 2018. "A scoring rule for factor and autoregressive models under misspecification," Working Papers 2018:18, Department of Economics, University of Venice "Ca' Foscari".
- Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
- Stefano Eusepi & Richard Crump & Emanuel Moench & Philippe Andrade, 2014. "Noisy Information and Fundamental Disagreement," 2014 Meeting Papers 797, Society for Economic Dynamics.
- Moro Matheus Fernando & Weise Andreas Dittmar & Bornia Antonio Cezar, 2020. "Model Hybrid for Sales Forecast for the Housing Market of São Paulo," Real Estate Management and Valuation, Sciendo, vol. 28(3), pages 45-64, September.
- Tian, Guangning & Peng, Yuchao & Meng, Yuhao, 2023. "Forecasting crude oil prices in the COVID-19 era: Can machine learn better?," Energy Economics, Elsevier, vol. 125(C).
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020.
"PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices,"
Energies, MDPI, vol. 13(14), pages 1-19, July.
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA forecast averaging - predicting day-ahead and intraday electricity prices," WORking papers in Management Science (WORMS) WORMS/20/02, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013.
"Short-term inflation forecasting models for Turkey and a forecast combination analysis,"
Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
- Kurmas Akdogan & Selen Baser & Meltem Gulenay Chadwick & Dilara Ertug & Timur Hulagu & Sevim Kosem & Fethi Ogunc & M. Utku Ozmen & Necati Tekatli, 2012. "Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis," Working Papers 1209, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Rangan Gupta & Marius Jurgilas & Alan Kabundi & Stephen M. Miller, 2009.
"Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Mode,"
Working Papers
0919, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2009. "Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Model," Working papers 2009-19, University of Connecticut, Department of Economics.
- Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2009. "Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Model," Working Papers 200913, University of Pretoria, Department of Economics.
- Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
- Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
- Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2021. "Big Data Information and Nowcasting: Consumption and Investment from Bank Transactions in Turkey," Papers 2107.03299, arXiv.org.
- Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
- Alain KABUNDI & Rangan GUPTA, 2009.
"The Effect of Monetary Policy on House Price Inflation: A Factor Augmented Vector Autoregression (FAVAR) Approach,"
EcoMod2009
21500048, EcoMod.
- Rangan Gupta & Alain Kabundi, 2009. "The Effect Of Monetary Policy On House Price Inflation: A Factor Augmented Vector Autoregression (Favar) Approach," Working Papers 200903, University of Pretoria, Department of Economics.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
- Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
- Sancetta, A., 2007. "Online Forecast Combination for Dependent Heterogeneous Data," Cambridge Working Papers in Economics 0718, Faculty of Economics, University of Cambridge.
- Schumacher, Christian, 2014. "MIDAS regressions with time-varying parameters: An application to corporate bond spreads and GDP in the Euro area," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100289, Verein für Socialpolitik / German Economic Association.
- Gianni Amisano & Andreas Beyer & Michele Lenza, 2010. "Enhancing monetary analysis," Research Bulletin, European Central Bank, vol. 11, pages 2-6.
- Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
- Thomas Flavin & Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Forecasting growth and inflation in an enlarged euro area," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 405-425.
- Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
- Ghysels, Eric & Ball, Ryan & Zhou, Huan, 2014. "Can we Automate Earnings Forecasts and Beat Analysts?," CEPR Discussion Papers 10186, C.E.P.R. Discussion Papers.
- Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018.
"Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 11(9), pages 1-20, September.
- Grzegorz Marcjasz & Tomasz Serafin & Rafal Weron, 2018. "Selection of calibration windows for day-ahead electricity price forecasting," HSC Research Reports HSC/18/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
- David E. Rapach & Jack K. Strauss, 2008. "Forecasting US employment growth using forecast combining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 75-93.
- Gibbs, Christopher G. & Vasnev, Andrey L., 2024.
"Conditionally optimal weights and forward-looking approaches to combining forecasts,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
- Christopher G. Gibbs & Andrey L. Vasnev, 2017. "Conditionally Optimal Weights and Forward-Looking Approaches to Combining Forecasts," Discussion Papers 2017-10, School of Economics, The University of New South Wales.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Antonio Martin Arroyo & Aranzazu de Juan Fernandez, 2020. "Split-then-Combine simplex combination and selection of forecasters," Papers 2012.11935, arXiv.org.
- Strauss, Jack, 2013. "Does housing drive state-level job growth? Building permits and consumer expectations forecast a state’s economic activity," Journal of Urban Economics, Elsevier, vol. 73(1), pages 77-93.
- Lise Pichette, 2012. "Extracting Information from the Business Outlook Survey Using Statistical Approaches," Discussion Papers 12-8, Bank of Canada.
- Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
- Christos Papamichael & Nicoletta Pashourtidou, 2016. "The Role of Survey Data in the Construction of Short-term GDP Growth Forecasts," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 10(2), pages 77-109, December.
- Espasa, Antoni & Mayo-Burgos, Iván, 2013.
"Forecasting aggregates and disaggregates with common features,"
International Journal of Forecasting, Elsevier, vol. 29(4), pages 718-732.
- Mayo, Iván, 2012. "Forecasting aggregates and disaggregates with common features," DES - Working Papers. Statistics and Econometrics. WS ws110805, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
- Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
- João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020.
"Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?,"
Mathematics, MDPI, vol. 8(11), pages 1-16, November.
- Joao F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Working Papers 202087, University of Pretoria, Department of Economics.
- Buncic, Daniel & Tischhauser, Martin, 2017.
"Macroeconomic factors and equity premium predictability,"
International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
- Buncic, Daniel & Tischhauser, Martin, 2015. "Macroeconomic Factors and Equity Premium Predictability," Economics Working Paper Series 1522, University of St. Gallen, School of Economics and Political Science.
- Wang, Yudong & Zhang, Bing & Diao, Xundi & Wu, Chongfeng, 2015. "Commodity price changes and the predictability of economic policy uncertainty," Economics Letters, Elsevier, vol. 127(C), pages 39-42.
- Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016.
"Fundamental disagreement,"
Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
- Philippe Andrade & Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2013. "Fundamental disagreement," Staff Reports 655, Federal Reserve Bank of New York.
- P. Andrade & R. Crump & S. Eusepi & E. Moench, 2014. "Fundamental disagreement," Working papers 524, Banque de France.
- Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
- Robert Lehmann & Klaus Wohlrabe, 2015.
"Forecasting GDP at the Regional Level with Many Predictors,"
German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
- Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
- Robert Lehmann & Klaus Wohlrabe, 2012. "Forecasting GDP at the Regional Level with Many Predictors," CESifo Working Paper Series 3956, CESifo.
- Lehmann, Robert & Wohlrabe, Klaus, 2013. "Forecasting GDP at the regional level with many predictors," Discussion Papers in Economics 17104, University of Munich, Department of Economics.
- Robert Lehmann & Klaus Wohlrabe, 2013. "Forecasting GDP at the regional level with many predictors," ERSA conference papers ersa13p15, European Regional Science Association.
- Markku Lanne & Pentti Saikkonen, 2011.
"GMM Estimation with Non‐causal Instruments,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 581-592, October.
- Lanne, Markku & Saikkonen, Pentti, 2009. "GMM Estimation with Noncausal Instruments," MPRA Paper 23649, University Library of Munich, Germany.
- Wright, Jonathan H., 2008.
"Bayesian Model Averaging and exchange rate forecasts,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
- Jonathan H. Wright, 2003. "Bayesian Model Averaging and exchange rate forecasts," International Finance Discussion Papers 779, Board of Governors of the Federal Reserve System (U.S.).
- Luca Guerrieri & Michelle Welch, 2012. "Can macro variables used in stress testing forecast the performance of banks?," Finance and Economics Discussion Series 2012-49, Board of Governors of the Federal Reserve System (U.S.).
- Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
- Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
- Clements, Adam & Vasnev, Andrey, 2021. "Forecast combination puzzle in the HAR model," Working Papers BAWP-2021-01, University of Sydney Business School, Discipline of Business Analytics.
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2014. "Selecting and combining experts from survey forecasts," DES - Working Papers. Statistics and Econometrics. WS ws140905, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Todd E. Clark & Michael W. McCracken, 2006. "Forecasting of small macroeconomic VARs in the presence of instabilities," Research Working Paper RWP 06-09, Federal Reserve Bank of Kansas City.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009.
"Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States,"
Working papers
2009-13, University of Connecticut, Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 0916, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012.
"Is there an optimal forecast combination? A stochastic dominance approach applied to the forecast combination puzzle,"
Working Papers
1206, University of Guelph, Department of Economics and Finance.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle," Working Paper series 17_12, Rimini Centre for Economic Analysis.
- Seojeong Lee & Youngki Shin, 2021.
"Complete subset averaging with many instruments,"
The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 290-314.
- Seojeong Lee & Youngki Shin, 2018. "Complete Subset Averaging with Many Instruments," Papers 1811.08083, arXiv.org, revised Aug 2020.
- Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011.
"Forecasting the US real house price index: Structural and non-structural models with and without fundamentals,"
Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 200927, University of Pretoria, Department of Economics.
- Rangan Gupta & Alan Kabundi & Stephen M. Miller, 2010. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 1001, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working papers 2009-42, University of Connecticut, Department of Economics.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Chanont Banternghansa & Michael W. McCracken, 2011.
"Real-time forecast averaging with ALFRED,"
Review, Federal Reserve Bank of St. Louis, vol. 93(Jan), pages 49-66.
- Chanont Banternghansa & Michael W. McCracken, 2010. "Real-time forecast averaging with ALFRED," Working Papers 2010-033, Federal Reserve Bank of St. Louis.
- Johannes Mayr & Dirk Ulbricht, 2007. "VAR Model Averaging for Multi-Step Forecasting," ifo Working Paper Series 48, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Marta Poncela-Blanco & Pilar Poncela, 2021. "Improving Wind Power Forecasts: Combination through Multivariate Dimension Reduction Techniques," Energies, MDPI, vol. 14(5), pages 1-16, March.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
- Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
- Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
- Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Bank of Finland Research Discussion Papers 1/2017, Bank of Finland.
- Garratt, Anthony & Mitchell, James & Vahey, Shaun P. & Wakerly, Elizabeth C., 2011.
"Real-time inflation forecast densities from ensemble Phillips curves,"
The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 77-87, January.
- Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2009. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," Birkbeck Working Papers in Economics and Finance 0910, Birkbeck, Department of Economics, Mathematics & Statistics.
- Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chikamatsu, Kyosuke & Hirakata, Naohisa & Kido, Yosuke & Otaka, Kazuki, 2021. "Mixed-frequency approaches to nowcasting GDP: An application to Japan," Japan and the World Economy, Elsevier, vol. 57(C).
- Anwen Yin, 2019. "Equity Premium Prediction with Structural Breaks: A Two-Stage Forecast Combination Approach," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(12), pages 1-50, December.
- Bakshi, Gurdip & Panayotov, George, 2013. "Predictability of currency carry trades and asset pricing implications," Journal of Financial Economics, Elsevier, vol. 110(1), pages 139-163.
- Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
- Rangan Gupta & Stephen M. Miller & Dylan van Wyk, 2010.
"Financial Market Liberalization, Monetary Policy, and Housing Price Dynamics,"
Working papers
2010-06, University of Connecticut, Department of Economics.
- Rangan Gupta & Marius Jurgilas & Stephen M. Miller & Dylan van Wyk, 2010. "Financial Market Liberalization, Monetary Policy, and Housing Price Dynamics," Working Papers 201009, University of Pretoria, Department of Economics.
- Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016.
"Improving short term load forecast accuracy via combining sister forecasts,"
Energy, Elsevier, vol. 98(C), pages 40-49.
- Jakub Nowotarski & Bidong Liu & Rafal Weron & Tao Hong, 2015. "Improving short term load forecast accuracy via combining sister forecasts," HSC Research Reports HSC/15/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018.
"On The Sources Of Uncertainty In Exchange Rate Predictability,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
- Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," SIRE Discussion Papers 2015-24, Scottish Institute for Research in Economics (SIRE).
- Byrne, Joseph P & Korobilis, Dimitris & Ribeiro, Pinho J, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," MPRA Paper 58956, University Library of Munich, Germany.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," Working Papers 2014_16, Business School - Economics, University of Glasgow.
- Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
- Hilde Bjørnland & Leif Brubakk & Anne Jore, 2008.
"Forecasting inflation with an uncertain output gap,"
Empirical Economics, Springer, vol. 35(3), pages 413-436, November.
- Bjørnland, Hilde C. & Brubakk, Leif & Jore, Anne Sofie, 2006. "Forecasting inflation with an uncertain output gap," Memorandum 11/2006, Oslo University, Department of Economics.
- Hilde C. Bjørnland & Leif Brubakk & Anne Sofie Jore, 2006. "Forecasting inflation with an uncertain output gap," Working Paper 2006/02, Norges Bank.
- Mariola Pilatowska, 2009. "The Combined Forecasts Using the Akaike Weights," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 5-16.
- James, Robert & Jarnecic, Elvis & Leung, Henry, 2022. "Who Values Economist Forecasts? Evidence From Trading in Treasury Markets," Journal of Financial Intermediation, Elsevier, vol. 49(C).
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Joshua Gallin & Randal Verbrugge, 2007. "Improving the CPI’s Age-Bias Adjustment: Leverage, Disaggregation and Model Averaging," Working Papers 411, U.S. Bureau of Labor Statistics.
- Badi H. Baltagi, 2008.
"Forecasting with panel data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
- Baltagi, Badi H., 2006. "Forecasting with panel data," Discussion Paper Series 1: Economic Studies 2006,25, Deutsche Bundesbank.
- Badi H. Baltagi, 2007. "Forecasting with Panel Data," Center for Policy Research Working Papers 91, Center for Policy Research, Maxwell School, Syracuse University.
- Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2016. "Can commodity returns forecast Canadian sector stock returns?," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 172-188.
- Till Weigt & Bernd Wilfling, 2021.
"An approach to increasing forecast‐combination accuracy through VAR error modeling,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 686-699, July.
- Till Weigt & Bernd Wilfling, 2018. "An approach to increasing forecast-combination accuracy through VAR error modeling," CQE Working Papers 6818, Center for Quantitative Economics (CQE), University of Muenster.
- Jakub Ryšánek, 2010. "Combining VAR Forecast Densities Using Fast Fourier Transform," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2010(5), pages 72-88.
- Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío & Senra, Eva, 2011.
"Forecast combination through dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 224-237.
- Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío & Senra, Eva, 2011. "Forecast combination through dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 27(2), pages 224-237, April.
- Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
- Benjamin Beckers & Samya Beidas-Strom, 2015. "Forecasting the Nominal Brent Oil Price with VARs—One Model Fits All?," IMF Working Papers 2015/251, International Monetary Fund.
- Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
- de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
- Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.
- Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Corradi, Valentina & Swanson, Norman R., 2014.
"Testing for structural stability of factor augmented forecasting models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
- Valentina Corradi & Norman Swanson, 2013. "Testing for Structural Stability of Factor Augmented Forecasting Models," Departmental Working Papers 201314, Rutgers University, Department of Economics.
- Yongchen Zhao, 2021.
"The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms,"
Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
- Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-04, Towson University, Department of Economics, revised Mar 2020.
- Bai, Fan & Zhang, Yaqi & Chen, Zhonglu & Li, Yan, 2023. "The volatility of daily tug-of-war intensity and stock market returns," Finance Research Letters, Elsevier, vol. 55(PA).
- Souhaïb Chamseddine Zardi, 2017. "Forecasting Inflation in a Macroeconomic Framework: An Application to Tunisia," IHEID Working Papers 07-2017, Economics Section, The Graduate Institute of International Studies.
- Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
- David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
- Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
- James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
- Christopher G. Gibbs, 2017.
"Forecast combination, non-linear dynamics, and the macroeconomy,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 653-686, March.
- Christopher Gibbs, 2015. "Forecast Combination, Non-linear Dynamics, and the Macroeconomy," Discussion Papers 2015-05, School of Economics, The University of New South Wales.
- Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015.
"Forecasting aggregate retail sales: The case of South Africa,"
International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar, 2013. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 201312, University of Pretoria, Department of Economics.
- Goodness C. Aye & Mehmet Balcilar Author-Name-First Mehmet & Rangan Gupta & Anandamayee Majumdar, 2014. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 15-21, Eastern Mediterranean University, Department of Economics.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
- Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
- Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014.
"Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
- Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2012. "Forecasting UK GDP growth, inflation and interest rates under structural change: a comparison of models with time-varying parameters," Bank of England working papers 450, Bank of England.
- Yavuz, Nilgün Çil & Yilanci, Veli, 2012. "Testing For Nonlinearity In G7 Macroeconomic Time Series," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 69-79, September.
- Gupta, Rangan & Modise, Mampho P., 2013.
"Does the source of oil price shocks matter for South African stock returns? A structural VAR approach,"
Energy Economics, Elsevier, vol. 40(C), pages 825-831.
- Rangan Gupta & Mampho P. Modise, 2013. "Does the Source of Oil Price Shocks Matter for South African Stock Returns? A Structural VAR Approach," Working Papers 201318, University of Pretoria, Department of Economics.
- Pirschel, Inske & Wolters, Maik H., 2014.
"Forecasting German key macroeconomic variables using large dataset methods,"
Kiel Working Papers
1925, Kiel Institute for the World Economy (IfW Kiel).
- Pirschel, Inske & Wolters, Maik, 2014. "Forecasting German key macroeconomic variables using large dataset methods," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100587, Verein für Socialpolitik / German Economic Association.
- Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019.
"Macroeconomic forecast accuracy in a data‐rich environment,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
- Philipp an de Meulen & Martin Micheli & Torsten Schmidt, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 0294, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
- Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
- Döhrn, Roland, 2019. "Schnellschätzung des RWI/ISLContainerumschlag-Index: Evaluierung und Weiterentwicklung," RWI Materialien 129, RWI - Leibniz-Institut für Wirtschaftsforschung.
- Esteban Fernández-Vázquez & Blanca Moreno, 2017. "Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator," Journal of Geographical Systems, Springer, vol. 19(4), pages 349-370, October.
- Martin Scheicher, 2010. "“Return-free risk”? Market pricing in credit risk markets," Research Bulletin, European Central Bank, vol. 11, pages 7-8.
- David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Naresh Bansal & Jack Strauss & Alireza Nasseh, 2015. "Can we consistently forecast a firm’s earnings? Using combination forecast methods to predict the EPS of Dow firms," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(1), pages 1-22, January.
- Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
- Seojeong Lee & Youngki Shin, 2018. "Optimal Estimation with Complete Subsets of Instruments," Department of Economics Working Papers 2018-15, McMaster University.
- Sancetta, A., 2005. "Forecasting Distributions with Experts Advice," Cambridge Working Papers in Economics 0517, Faculty of Economics, University of Cambridge.
- Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
- Glennon, Dennis & Kiefer, Hua & Mayock, Tom, 2018. "Measurement error in residential property valuation: An application of forecast combination," Journal of Housing Economics, Elsevier, vol. 41(C), pages 1-29.
- Milena Lipovina-Božović, 2013. "A Comparison Of The Var Model And The Pc Factor Model In Forecasting Inflation In Montenegro," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 58(198), pages 115-136, July - Se.
- Pilar Poncela & Eva Senra, 2017. "Measuring uncertainty and assessing its predictive power in the euro area," Empirical Economics, Springer, vol. 53(1), pages 165-182, August.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
- Peng, Huan & Chen, Ruoxun & Mei, Dexiang & Diao, Xiaohua, 2018. "Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 78-85.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
- Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
- Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
- Adebayo Kutu & Gbenga Akinola & Ntokozo Nzimande, 2016. "Monetary Policy and Output Growth Forecasting in a SVAR Perspective," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(7), pages 1-71, July.
- Pang, Iris Ai Jao, 2010. "Forecasting Hong Kong economy using factor augmented vector autoregression," MPRA Paper 32495, University Library of Munich, Germany.
- Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
- Arkadiusz Jędrzejewski & Grzegorz Marcjasz & Rafał Weron, 2021.
"Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited: Parameter-Rich Models Estimated via the LASSO,"
Energies, MDPI, vol. 14(11), pages 1-17, June.
- Arkadiusz Jedrzejewski & Grzegorz Marcjasz & Rafal Weron, 2021. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Parameter-rich models estimated via the LASSO," WORking papers in Management Science (WORMS) WORMS/21/04, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
- David E. Rapach & Jack K. Strauss, 2005. "Forecasting employment growth in Missouri with many potentially relevant predictors: an analysis of forecast combining methods," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 97-112.
- Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Laborda, Ricardo, 2018. "Optimal combination of currency strategies," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 129-140.
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009.
"Macro modelling with many models,"
Working Paper
2009/15, Norges Bank.
- Dr. James Mitchell, 2009. "Macro Modelling with Many Models," National Institute of Economic and Social Research (NIESR) Discussion Papers 337, National Institute of Economic and Social Research.
- Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
- Daniel Hopp, 2021. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Papers 2106.08901, arXiv.org.
- Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2018. "How good can heuristic-based forecasts be? A comparative performance of econometric and heuristic models for UK and US asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 139-169, January.
- Ekaterina V. Astafyeva & Maria Yu. Turuntseva, 2023. "Анализ Возможностей Улучшения Качества Прогнозов Цен На Природные Ресурсы Методами Комбинирования На Основе Регрессионных Оценок Весов," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 12, pages 24-33, December.
- Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2020. "Economic indicators and stock market volatility in an emerging economy," Economic Systems, Elsevier, vol. 44(2).
- Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
- Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
- Stein, Tobias, 2024. "Forecasting the equity premium with frequency-decomposed technical indicators," International Journal of Forecasting, Elsevier, vol. 40(1), pages 6-28.
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
- Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
- Liebermann, Joelle, 2012.
"Real-time forecasting in a data-rich environment,"
MPRA Paper
39452, University Library of Munich, Germany.
- Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
- Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
- Gao, Shang & Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting stock market volatility: The sum of the parts is more than the whole," Finance Research Letters, Elsevier, vol. 55(PA).
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Research Discussion Papers 1/2017, Bank of Finland.
- Éric Dubois, 2006. "Présentation générale," Économie et Prévision, Programme National Persée, vol. 172(1), pages 1-9.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
- Cláudia Duarte & Sónia Cabral, . "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
- Huiyu Huang & Tae-Hwy Lee, 2010.
"To Combine Forecasts or to Combine Information?,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
- Huiyu Huang & Tae-Hwy Lee, 2006. "To Combine Forecasts or to Combine Information?," Working Papers 200806, University of California at Riverside, Department of Economics, revised Feb 2009.
- Cortazar, Gonzalo & Ortega, Hector & Valencia, Consuelo, 2021. "How good are analyst forecasts of oil prices?," Energy Economics, Elsevier, vol. 102(C).
- Éric Vansteenberghe, 2024. "Insurance Supervision under Climate Change: A Pioneers Detection Method [La supervision des assurances lorsque le climat est bouleversé : une Méthode de Détection des Pionniers]," Débats économiques et financiers 43, Banque de France.
- Wang, Yudong & Pan, Zhiyuan & Wu, Chongfeng & Wu, Wenfeng, 2020. "Industry equi-correlation: A powerful predictor of stock returns," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 1-24.
- Hsiao, Cheng & Wan, Shui Ki, 2011. "Comparison of forecasting methods with an application to predicting excess equity premium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1235-1246.
- Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
- Jonathan H. Wright, 2009.
"Forecasting US inflation by Bayesian model averaging,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
- Jonathan H. Wright, 2003. "Forecasting U.S. inflation by Bayesian Model Averaging," International Finance Discussion Papers 780, Board of Governors of the Federal Reserve System (U.S.).
- Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
- Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Guidolin, Massimo & Timmermann, Allan, 2009.
"Forecasts of US short-term interest rates: A flexible forecast combination approach,"
Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
- Massimo Guidolin & Allan Timmerman, 2007. "Forecasts of U.S. short-term interest rates: a flexible forecast combination approach," Working Papers 2005-059, Federal Reserve Bank of St. Louis.
- Timmermann, Allan & Guidolin, Massimo, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.
- Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
- Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011.
"Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria,"
Departmental Working Papers
2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," Working Papers 20110301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," ETA: Economic Theory and Applications 253725, Fondazione Eni Enrico Mattei (FEEM).
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Working Papers 2017.06, Fondazione Eni Enrico Mattei.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2018. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Papers 1804.08315, arXiv.org.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," MPRA Paper 76308, University Library of Munich, Germany.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
- Drechsel, Katja & Scheufele, Rolf, 2011. "The Financial Crisis from a Forecaster’s Perspective," IWH Discussion Papers 5/2011, Halle Institute for Economic Research (IWH).
- James Yae & Yang Luo, 2023. "Robust monitoring machine: a machine learning solution for out-of-sample R $$^2$$ 2 -hacking in return predictability monitoring," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
- Garcia-Ferrer, A. & de Juan, A. & Poncela, P., 2006. "Forecasting traffic accidents using disaggregated data," International Journal of Forecasting, Elsevier, vol. 22(2), pages 203-222.
- Steffen Henzel & Johannes Mayr, 2009. "The Virtues of VAR Forecast Pooling – A DSGE Model Based Monte Carlo Study," ifo Working Paper Series 65, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Maxime Leboeuf & Louis Morel, 2014. "Forecasting Short-Term Real GDP Growth in the Euro Area and Japan Using Unrestricted MIDAS Regressions," Discussion Papers 14-3, Bank of Canada.
- Salisu, Afees A. & Vo, Xuan Vinh, 2020. "Predicting stock returns in the presence of COVID-19 pandemic: The role of health news," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
- Janine Aron & John Muellbauer, 2013.
"New Methods for Forecasting Inflation, Applied to the US,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 637-661, October.
- Muellbauer, John & Aron, Janine, 2010. "New methods for forecasting inflation, applied to the US," CEPR Discussion Papers 7877, C.E.P.R. Discussion Papers.
- Barsoum, Fady & Stankiewicz, Sandra, 2015.
"Forecasting GDP growth using mixed-frequency models with switching regimes,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
- Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
- Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
- Chao, Shih-Wei, 2016. "Do economic variables improve bond return volatility forecasts?," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 10-26.
- Christian Gillitzer, 2016. "The Sticky Information Phillips Curve: Evidence for Australia," The Economic Record, The Economic Society of Australia, vol. 92(299), pages 548-567, December.
- Micheli, Martin, 2016. "Local governments' indebtedness and its impact on real estate prices," Ruhr Economic Papers 605, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- De Pooter, Michiel & Ravazzolo, Francesco & van Dijk, Dick, 2006.
"Predicting the term structure of interest rates incorporating parameter uncertainty, model uncertainty and macroeconomic information,"
MPRA Paper
2512, University Library of Munich, Germany, revised 03 Mar 2007.
- Michiel D. de Pooter & Francesco Ravazzolo & Dick van Dijk, 2007. "Predicting the Term Structure of Interest Rates: Incorporating Parameter Uncertainty, Model Uncertainty and Macroeconomic Information," Tinbergen Institute Discussion Papers 07-028/4, Tinbergen Institute.
- Shahnaz Parsaeian, 2024. "Stein-like Common Correlated Effects Estimation under Structural Breaks," Econometrics, MDPI, vol. 12(2), pages 1-23, April.
- Zishu Zhan & Yang Li & Yuhong Yang & Cunjie Lin, 2023. "Model averaging for semiparametric varying coefficient quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 649-681, August.
- Petar Sorić & Ivana Lolić, 2015. "A note on forecasting euro area inflation: leave- $$h$$ h -out cross validation combination as an alternative to model selection," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 205-214, March.
- Satoshi Urasawa, 2023. "The Usefulness of High-Frequency Alternative Data to Obtain Nowcasts for Japan’s GDP: Evidence from Credit Card Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 191-211, September.
- Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
- Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
- Algaba, Andres & Boudt, Kris, 2017. "Generalized financial ratios to predict the equity premium," Economic Modelling, Elsevier, vol. 66(C), pages 244-257.
- Pauwels, Laurent, 2019. "Predicting China’s Monetary Policy with Forecast Combinations," Working Papers BAWP-2019-07, University of Sydney Business School, Discipline of Business Analytics.
- Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
- Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- Kitlinski, Tobias, 2015. "With or without you: Do financial data help to forecast industrial production?," Ruhr Economic Papers 558, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Chen, Yizhong & He, Li & Li, Jing & Cheng, Xi & Lu, Hongwei, 2016. "An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, Elsevier, vol. 183(C), pages 969-983.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011.
"Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria,"
Working Papers
20110301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," ET: Economic Theory 253725, Fondazione Eni Enrico Mattei (FEEM).
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2018. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Papers 1804.08315, arXiv.org.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Working Papers 2017.06, Fondazione Eni Enrico Mattei.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," MPRA Paper 76308, University Library of Munich, Germany.
- Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
- Anatolyev, Stanislav & Khabibullin, Renat & Prokhorov, Artem, 2014. "An algorithm for constructing high dimensional distributions from distributions of lower dimension," Economics Letters, Elsevier, vol. 123(3), pages 257-261.
- Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
- Zhang, Chu & Zhao, Shen, 2023. "The macroeconomic announcement premium and information environment," Journal of Monetary Economics, Elsevier, vol. 139(C), pages 55-73.
- Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
- Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Konstantin A. Kholodilin & Boriss Siliverstovs, 2017.
"Think national, forecast local: a case study of 71 German urban housing markets,"
Applied Economics, Taylor & Francis Journals, vol. 49(42), pages 4271-4297, September.
- Konstantin A. Kholodilin & Boriss Siliverstovs, 2015. "Think national, forecast local: A case study of 71 German urban housing markets," KOF Working papers 15-372, KOF Swiss Economic Institute, ETH Zurich.
- Greenaway-McGrevy, Ryan, 2022. "Forecast combination for VARs in large N and T panels," International Journal of Forecasting, Elsevier, vol. 38(1), pages 142-164.
- Qu, Hui & Li, Guo, 2023. "Multi-perspective investor attention and oil futures volatility forecasting," Energy Economics, Elsevier, vol. 119(C).
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251.
- Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
- Daniel Hopp, 2022. "Performance of long short-term memory artificial neural networks in nowcasting during the COVID-19 crisis," Papers 2203.11872, arXiv.org.
- Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2015.
"Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2014. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Working Paper series 05_14, Rimini Centre for Economic Analysis.
- Krzysztof Drachal & Michał Pawłowski, 2024. "Forecasting Selected Commodities’ Prices with the Bayesian Symbolic Regression," IJFS, MDPI, vol. 12(2), pages 1-56, March.
- Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
- Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
- Chen, Xingyi & Li, Haiqi & Zhang, Jing, 2023. "Complete subset averaging approach for high-dimensional generalized linear models," Economics Letters, Elsevier, vol. 226(C).
- Maria Ghani & Usman Ghani, 2024. "Economic Policy Uncertainty and Emerging Stock Market Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 165-181, March.
- Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
- Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2016.
"Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors,"
Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(8), pages 1935-1955, August.
- Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2011. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Working Papers 201122, University of Pretoria, Department of Economics.
- Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
- Aksoy Yunus & Leon-Ledesma Miguel A., 2008.
"Non-Linearities and Unit Roots in G7 Macroeconomic Variables,"
The B.E. Journal of Macroeconomics, De Gruyter, vol. 8(1), pages 1-44, February.
- Yunus Aksoy & Miguel A. Leon-Ledesma, 2007. "Non-linearities and Unit Roots in G7 Macroeconomic Variables," Birkbeck Working Papers in Economics and Finance 0710, Birkbeck, Department of Economics, Mathematics & Statistics.
- Fornaro, Paolo, 2020. "Nowcasting Industrial Production Using Uncoventional Data Sources," ETLA Working Papers 80, The Research Institute of the Finnish Economy.
- Jiun-Hua Su, 2021. "No-Regret Forecasting with Egalitarian Committees," Papers 2109.13801, arXiv.org.
- Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
- Ravazzolo, F. & van Dijk, H.K. & Verbeek, M.J.C.M., 2007. "Predictive gains from forecast combinations using time-varying model weights," Econometric Institute Research Papers EI 2007-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
- Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
- Andre Jungmittag, 2016.
"Combination of Forecasts across Estimation Windows: An Application to Air Travel Demand,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 373-380, July.
- Jungmittag, Andre, 2014. "Combination of forecasts across estimation windows: An application to air travel demand," Working Paper Series 05, Frankfurt University of Applied Sciences, Faculty of Business and Law.
- Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Lukasz Gatarek & Lennart Hoogerheide & Koen Hooning & Herman K. van Dijk, 2013. "Censored Posterior and Predictive Likelihood in Left-Tail Prediction for Accurate Value at Risk Estimation," Tinbergen Institute Discussion Papers 13-060/III, Tinbergen Institute, revised 06 Mar 2014.
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
- Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
- Davor Kunovac & Borna Špalat, 2014. "Nowcasting GDP Using Available Monthly Indicators," Working Papers 39, The Croatian National Bank, Croatia.
- Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
- Francis X. Diebold & Minchul Shin, 2017. "Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts," PIER Working Paper Archive 17-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Aug 2017.
- Panopoulou, Ekaterini, 2007. "Predictive financial models of the euro area: A new evaluation test," International Journal of Forecasting, Elsevier, vol. 23(4), pages 695-705.
- Dominik Wolff & Ulrich Neugebauer, 2019. "Tree-based machine learning approaches for equity market predictions," Journal of Asset Management, Palgrave Macmillan, vol. 20(4), pages 273-288, July.
- Mahmut Gunay, 2016. "Forecasting Turkish GDP Growth with Financial Variables and Confidence Indicators," CBT Research Notes in Economics 1614, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
- Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
- Li, Yan & Huo, Jiale & Xu, Yongan & Liang, Chao, 2023. "Belief-based momentum indicator and stock market return predictability," Research in International Business and Finance, Elsevier, vol. 64(C).
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Torben Klarl, 2016. "The nexus between housing and GDP re-visited: A wavelet coherence view on housing and GDP for the U.S," Economics Bulletin, AccessEcon, vol. 36(2), pages 704-720.
- Tom Engsted & Stig V. Møller & Magnus Sander, 2013. "Bond return predictability in expansions and recessions," CREATES Research Papers 2013-13, Department of Economics and Business Economics, Aarhus University.
- Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
- Hoornweg, V., 2013. "Some Tools for Robustifying Econometric Analyses," Econometric Institute Research Papers 50163, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Ronald Ravinesh Kumar & Peter Josef Stauvermann & Hang Thi Thu Vu, 2021. "The Relationship between Yield Curve and Economic Activity: An Analysis of G7 Countries," JRFM, MDPI, vol. 14(2), pages 1-23, February.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Antonio Bello & Derek Bunn & Javier Reneses & Antonio Muñoz, 2016. "Parametric Density Recalibration of a Fundamental Market Model to Forecast Electricity Prices," Energies, MDPI, vol. 9(11), pages 1-15, November.
- Afsaneh Bahrami & Abul Shamsuddin & Katherine Uylangco, 2018. "Out‐of‐sample stock return predictability in emerging markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(3), pages 727-750, September.
- Antoni Espasa & Eva Senra, 2017. "Twenty-Two Years of Inflation Assessment and Forecasting Experience at the Bulletin of EU & US Inflation and Macroeconomic Analysis," Econometrics, MDPI, vol. 5(4), pages 1-28, October.
- Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
- Geoff Kenny, 2010. "Macroeconomic forecasting: can forecast combination help?," Research Bulletin, European Central Bank, vol. 11, pages 9-12.
- Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
- Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Nina Vujanovic & Bruno Casella & Richard Bolwijn, . "Forecasting global FDI: a panel data approach," UNCTAD Transnational Corporations Journal, United Nations Conference on Trade and Development.
- Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
- Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
- Isaiah Hull & Marten Löf & Markus Tibblin, 2017. "Price information collected online and short-term inflation forecasts / Scraped sales price information and short-term CPI forecasts," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Big Data, volume 44, Bank for International Settlements.
- Yu, Dan & Chen, Chuang & Wang, Yudong & Zhang, Yaojie, 2023. "Hedging pressure momentum and the predictability of oil futures returns," Economic Modelling, Elsevier, vol. 121(C).
- Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Sebastian M. Blanc & Thomas Setzer, 2020. "Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination," Management Science, INFORMS, vol. 66(12), pages 5720-5737, December.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- repec:zbw:bofitp:2017_019 is not listed on IDEAS
- Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
- Tyler Pike & Horacio Sapriza & Tom Zimmermann, 2019. "Bottom-up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults using Machine Learning," Finance and Economics Discussion Series 2019-070, Board of Governors of the Federal Reserve System (U.S.).
- Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
- Francesca Monti, 2010.
"Combining Judgment and Models,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1641-1662, December.
- Francesca Monti, 2010. "Combining Judgment and Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1641-1662, December.
- Anwen Yin, 2021. "Forecasting the Market Equity Premium: Does Nonlinearity Matter?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(5), pages 1-9, May.
- an de Meulen, Philipp & Micheli, Martin & Schmidt, Torsten, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 294, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
- repec:zbw:bofrdp:2017_001 is not listed on IDEAS
- Patrick Bielstein & Matthias X. Hanauer, 2019. "Mean-variance optimization using forward-looking return estimates," Review of Quantitative Finance and Accounting, Springer, vol. 52(3), pages 815-840, April.
- Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
- Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
- Rossi, Barbara & Gürkaynak, Refet & Kısacıkoğlu, Burçin, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
- Lauter, Tobias & Prokopczuk, Marcel, 2022. "Measuring commodity market quality," Journal of Banking & Finance, Elsevier, vol. 145(C).
- Maria Ludovica Drudi & Stefano Nobili, 2021. "A liquidity risk early warning indicator for Italian banks: a machine learning approach," Temi di discussione (Economic working papers) 1337, Bank of Italy, Economic Research and International Relations Area.
- Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
- Astafyeva, Ekaterina & Turuntseva, Marina, 2024. "Forecast evaluation improving using the simplest methods of individual forecasts’ combination," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 74, pages 78-103.
- John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
- Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland, Institute for Economies in Transition.
- Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2012. "Examination of property forecasting models - accuracy and its improvement through combination forecasting," ERES eres2012_082, European Real Estate Society (ERES).
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
- repec:ecb:ecbwps:20111428 is not listed on IDEAS
- Bo Zhang, 2019. "Real‐time inflation forecast combination for time‐varying coefficient models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 175-191, April.
- Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
- Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Li Liu & Zhiyuan Pan & Yudong Wang, 2021. "What can we learn from the return predictability over the business cycle?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 108-131, January.
- Liu, Jing & He, Qiubei & Li, Yan & Huynh, Luu Duc Toan & Liang, Chao, 2023. "The change in stock-selection risk and stock market returns," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Martina Assereto & Julie Byrne, 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment," Energies, MDPI, vol. 13(23), pages 1-20, November.
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
- Li Liu & Yudong Wang, 2021. "Forecasting aggregate market volatility: The role of good and bad uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 40-61, January.
- Dirk Ulbricht, 2016. "It is not structural breaks that earn average forecasts their fame," Economics Bulletin, AccessEcon, vol. 36(2), pages 1250-1259.
- Sancetta, Alessio, 2007. "Online forecast combinations of distributions: Worst case bounds," Journal of Econometrics, Elsevier, vol. 141(2), pages 621-651, December.
- Anastasios Petropoulos & Vasilis Siakoulis & Dionysios Mylonas & Aristotelis Klamargias, 2018. "A combined statistical framework for forecasting default rates of Greek Financial Institutions' credit portfolios," Working Papers 243, Bank of Greece.
- Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.
- Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.