IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v75y2022ics0301420721005286.html
   My bibliography  Save this article

Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures?

Author

Listed:
  • Yan, Xiang
  • Bai, Jiancheng
  • Li, Xiafei
  • Chen, Zhonglu

Abstract

In this paper, we try to forecast the volatility of Chinese crude oil futures (COF) using multiple economic policy uncertainty indicators. MIDAS-RV model is combined with the principal component analysis (PCA), scaled PCA (SPCA) and partial least squares (PLS) techniques in this work, construct the newly MIDAS-RV-PCA, MIDAS-RV-PLS and MIDAS-RV-SPCA models, their prediction performance is compared with the common combination forecasting methods. The in-sample estimation analysis on MIDAS-RV-X models show the that it is necessary to consider multiple economic policy uncertainty indices when predicting the Chinese COF volatility and the in-sample analysis on dimensionality reduction model further demonstrate the rationality of using dimensionality reduction techniques. The out-of-sample evaluation results show that the MIDAS-RV-SPCA is a superior model when forecasting the short-term volatility of Chinese COF using multiple economic policy uncertainty indicators, especially during the periods of high volatility and COVID-19 pandemic. The results also indicates that the DMSPE(0.9) method in the combination forecasting method shows its superior forecasting ability in long-term volatility of Chinese COF, especially during the low volatility and pre-pandemic period.

Suggested Citation

  • Yan, Xiang & Bai, Jiancheng & Li, Xiafei & Chen, Zhonglu, 2022. "Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures?," Resources Policy, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721005286
    DOI: 10.1016/j.resourpol.2021.102521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721005286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    2. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    3. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    4. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    5. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    6. Chen, Zhonglu & Ye, Yong & Li, Xiafei, 2022. "Forecasting China's crude oil futures volatility: New evidence from the MIDAS-RV model and COVID-19 pandemic," Resources Policy, Elsevier, vol. 75(C).
    7. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    8. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    9. Liu, Yang & Han, Liyan & Xu, Yang, 2021. "The impact of geopolitical uncertainty on energy volatility," International Review of Financial Analysis, Elsevier, vol. 75(C).
    10. Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "News-based equity market uncertainty and crude oil volatility," Energy, Elsevier, vol. 222(C).
    11. Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    13. Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
    14. Sarwar, Suleman & Tiwari, Aviral Kumar & Tingqiu, Cao, 2020. "Analyzing volatility spillovers between oil market and Asian stock markets," Resources Policy, Elsevier, vol. 66(C).
    15. Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
    16. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    17. Fenghua Wen & Yupei Zhao & Minzhi Zhang & Chunyan Hu, 2019. "Forecasting realized volatility of crude oil futures with equity market uncertainty," Applied Economics, Taylor & Francis Journals, vol. 51(59), pages 6411-6427, December.
    18. Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016. "Uncertainty and crude oil returns," Energy Economics, Elsevier, vol. 55(C), pages 92-100.
    19. Sarwar, Suleman & Shahbaz, Muhammad & Anwar, Awais & Tiwari, Aviral Kumar, 2019. "The importance of oil assets for portfolio optimization: The analysis of firm level stocks," Energy Economics, Elsevier, vol. 78(C), pages 217-234.
    20. Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Energies, MDPI, vol. 14(14), pages 1-15, July.
    21. Khalfaoui, Rabeh & Baumöhl, Eduard & Sarwar, Suleman & Výrost, Tomáš, 2021. "Connectedness between energy and nonenergy commodity markets: Evidence from quantile coherency networks," Resources Policy, Elsevier, vol. 74(C).
    22. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    23. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    24. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    25. Cheima Gharib & Salma Mefteh-Wali & Vanessa Serret & Sami Ben Jabeur, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Post-Print hal-03375164, HAL.
    26. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    27. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    28. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    29. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    30. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    31. Muhammad Shafiullah & Sajid M. Chaudhry & Muhammad Shahbaz & Juan C. Reboredo, 2021. "Quantile causality and dependence between crude oil and precious metal prices," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6264-6280, October.
    32. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    33. Chao Liang & Yu Wei & Xiafei Li & Xuhui Zhang & Yifeng Zhang, 2020. "Uncertainty and crude oil market volatility: new evidence," Applied Economics, Taylor & Francis Journals, vol. 52(27), pages 2945-2959, May.
    34. Yaw‐Huei Wang & Yun‐Yi Wang, 2016. "The Information Content of Intraday Implied Volatility for Volatility Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 167-178, March.
    35. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    36. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    37. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    38. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    39. Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
    40. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Juan & Ma, Feng & Qiu, Xuemei & Li, Tao, 2023. "The role of categorical EPU indices in predicting stock-market returns," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 365-378.
    2. Yan, Xiang & Bai, Jiancheng & Zhang, Yueyan & Hu, Shiliang, 2022. "Can the ecological environment reverse feed renewable energy technology innovation? -- Heterogeneity test from the Yangtze River Economic Belt," Renewable Energy, Elsevier, vol. 195(C), pages 1381-1392.
    3. Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
    4. Lu, Xinjie & Ma, Feng & Li, Haibo & Wang, Jianqiong, 2023. "INE oil futures volatility prediction: Exchange rates or international oil futures volatility?," Energy Economics, Elsevier, vol. 126(C).
    5. Jin, Daxiang & He, Mengxi & Xing, Lu & Zhang, Yaojie, 2022. "Forecasting China's crude oil futures volatility: How to dig out the information of other energy futures volatilities?," Resources Policy, Elsevier, vol. 78(C).
    6. Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
    7. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Zheng, Yonghong & Qian, Qi & Tian, Yajun & Xie, Kechang, 2022. "Comparative resource-environment-economy assessment of coal- and oil-based aromatics production," Resources Policy, Elsevier, vol. 77(C).
    8. Guo, Lili & Huang, Xinya & Li, Yanjiao & Li, Houjian, 2023. "Forecasting crude oil futures price using machine learning methods: Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
    9. Nikolas Michael & Mihai Cucuringu & Sam Howison, 2023. "OFTER: An Online Pipeline for Time Series Forecasting," Papers 2304.03877, arXiv.org.
    10. Huang, Jianbai & Dong, Xuesong & Zhang, Hongwei & Liu, Jia & Gao, Wang, 2022. "Dynamic and frequency-domain spillover among within and cross-country policy uncertainty, crude oil and gold market: Evidence from US and China," Resources Policy, Elsevier, vol. 78(C).
    11. Xue Gong & Weiguo Zhang & Weijun Xu & Zhe Li, 2022. "Uncertainty index and stock volatility prediction: evidence from international markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-44, December.
    12. Zhang, Lixia & Bai, Jiancheng & Zhang, Yueyan & Cui, Can, 2023. "Global economic uncertainty and the Chinese stock market: Assessing the impacts of global indicators," Research in International Business and Finance, Elsevier, vol. 65(C).
    13. Luo, Tao & Zhang, Lixia & Sun, Huaping & Bai, Jiancheng, 2023. "Enhancing exchange rate volatility prediction accuracy: Assessing the influence of different indices on the USD/CNY exchange rate," Finance Research Letters, Elsevier, vol. 58(PB).
    14. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    15. Gaoxiu Qiao & Yijun Pan & Chao Liang & Lu Wang & Jinghui Wang, 2024. "Forecasting Chinese crude oil futures volatility: New evidence based on dual feature processing of large‐scale variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2495-2521, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    2. Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
    3. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    4. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    5. Chao Liang & Yi Zhang & Yaojie Zhang, 2022. "Forecasting the volatility of the German stock market: New evidence," Applied Economics, Taylor & Francis Journals, vol. 54(9), pages 1055-1070, February.
    6. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    7. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    8. Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
    9. Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    10. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    11. Hong, Yanran & Wang, Lu & Liang, Chao & Umar, Muhammad, 2022. "Impact of financial instability on international crude oil volatility: New sight from a regime-switching framework," Resources Policy, Elsevier, vol. 77(C).
    12. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    13. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    14. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    15. Guo, Yangli & Li, Pan & Wu, Hanlin, 2023. "Jumps in the Chinese crude oil futures volatility forecasting: New evidence," Energy Economics, Elsevier, vol. 126(C).
    16. Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
    17. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    18. Chen, Zhonglu & Liang, Chao & Umar, Muhammad, 2021. "Is investor sentiment stronger than VIX and uncertainty indices in predicting energy volatility?," Resources Policy, Elsevier, vol. 74(C).
    19. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    20. Zhang, Lixia & Luo, Qin & Guo, Xiaozhu & Umar, Muhammad, 2022. "Medium-term and long-term volatility forecasts for EUA futures with country-specific economic policy uncertainty indices," Resources Policy, Elsevier, vol. 77(C).

    More about this item

    Keywords

    Chinese crude oil futures; Realized volatility forecasting; Economic policy uncertainty indicators; Dimensional reduction technology;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721005286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.