IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i4d10.1007_s10463-022-00857-z.html
   My bibliography  Save this article

Model averaging for semiparametric varying coefficient quantile regression models

Author

Listed:
  • Zishu Zhan

    (Renmin University of China)

  • Yang Li

    (Renmin University of China)

  • Yuhong Yang

    (University of Minnesota)

  • Cunjie Lin

    (Renmin University of China)

Abstract

In this study, we propose a model averaging approach to estimating the conditional quantiles based on a set of semiparametric varying coefficient models. Different from existing literature on the subject, we consider a particular form for all candidates, where there is only one varying coefficient in each sub-model, and all the candidates under investigation may be misspecified. We propose a weight choice criterion based on a leave-more-out cross-validation objective function. Moreover, the resulting averaging estimator is more robust against model misspecification due to the weighted coefficients that adjust the relative importance of the varying and constant coefficients for the same predictors. We prove out statistical properties for each sub-model and asymptotic optimality of the weight selection method. Simulation studies show that the proposed procedure has satisfactory prediction accuracy. An analysis of a skin cutaneous melanoma data further supports the merits of the proposed approach.

Suggested Citation

  • Zishu Zhan & Yang Li & Yuhong Yang & Cunjie Lin, 2023. "Model averaging for semiparametric varying coefficient quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 649-681, August.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:4:d:10.1007_s10463-022-00857-z
    DOI: 10.1007/s10463-022-00857-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00857-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00857-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    2. Huazhen Lin & Zhe Fei & Yi Li, 2016. "A Semiparametrically Efficient Estimator of the Time-Varying Effects for Survival Data with Time-Dependent Treatment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 649-663, September.
    3. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    4. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
    5. Cai, Zongwu & Xiao, Zhijie, 2012. "Semiparametric quantile regression estimation in dynamic models with partially varying coefficients," Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
    6. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    7. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    8. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    9. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    10. Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
    11. Yang Y., 2001. "Adaptive Regression by Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 574-588, June.
    12. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    13. Jialiang Li & Xiaochao Xia & Weng Kee Wong & David Nott, 2018. "Varying‐coefficient semiparametric model averaging prediction," Biometrics, The International Biometric Society, vol. 74(4), pages 1417-1426, December.
    14. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    15. Yang, Yuhong, 2007. "Prediction/Estimation With Simple Linear Models: Is It Really That Simple?," Econometric Theory, Cambridge University Press, vol. 23(1), pages 1-36, February.
    16. Chenglong Ye & Yi Yang & Yuhong Yang, 2018. "Sparsity Oriented Importance Learning for High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1797-1812, October.
    17. Rong Zhu & Alan T. K. Wan & Xinyu Zhang & Guohua Zou, 2019. "A Mallows-Type Model Averaging Estimator for the Varying-Coefficient Partially Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 882-892, April.
    18. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    19. Cai, Zongwu & Chen, Linna & Fang, Ying, 2018. "A semiparametric quantile panel data model with an application to estimating the growth effect of FDI," Journal of Econometrics, Elsevier, vol. 206(2), pages 531-553.
    20. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    2. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    3. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    4. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    5. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    6. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    7. Miaomiao Wang & Xinyu Zhang & Alan T. K. Wan & Kang You & Guohua Zou, 2023. "Jackknife model averaging for high‐dimensional quantile regression," Biometrics, The International Biometric Society, vol. 79(1), pages 178-189, March.
    8. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    9. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    10. Zongwu Cai & Meng Shi & Yue Zhao & Wuqing Wu, 2020. "Testing Financial Hierarchy Based on A PDQ-CRE Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202011, University of Kansas, Department of Economics, revised Jul 2020.
    11. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    12. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    13. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    14. Aman Ullah & Xinyu Zhang, 2015. "Grouped Model Averaging for Finite Sample Size," Working Papers 201501, University of California at Riverside, Department of Economics.
    15. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
    16. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
    17. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
    18. Qingfeng Liu & Qingsong Yao & Guoqing Zhao, 2020. "Model averaging estimation for conditional volatility models with an application to stock market volatility forecast," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 841-863, August.
    19. Su, Liangjun & Hoshino, Tadao, 2016. "Sieve instrumental variable quantile regression estimation of functional coefficient models," Journal of Econometrics, Elsevier, vol. 191(1), pages 231-254.
    20. Cai, Zongwu & Chen, Linna & Fang, Ying, 2018. "A semiparametric quantile panel data model with an application to estimating the growth effect of FDI," Journal of Econometrics, Elsevier, vol. 206(2), pages 531-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:4:d:10.1007_s10463-022-00857-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.