IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.11935.html
   My bibliography  Save this paper

Split-then-Combine simplex combination and selection of forecasters

Author

Listed:
  • Antonio Martin Arroyo
  • Aranzazu de Juan Fernandez

Abstract

This paper considers the Split-Then-Combine (STC) approach (Arroyo and de Juan, 2014) to combine forecasts inside the simplex space, the sample space of positive weights adding up to one. As it turns out, the simplicial statistic given by the center of the simplex compares favorably against the fixed-weight, average forecast. Besides, we also develop a Combine-After-Selection (CAS) method to get rid of redundant forecasters. We apply these two approaches to make out-of-sample one-step ahead combinations and subcombinations of forecasts for several economic variables. This methodology is particularly useful when the sample size is smaller than the number of forecasts, a case where other methods (e.g., Least Squares (LS) or Principal Component Analysis (PCA)) are not applicable.

Suggested Citation

  • Antonio Martin Arroyo & Aranzazu de Juan Fernandez, 2020. "Split-then-Combine simplex combination and selection of forecasters," Papers 2012.11935, arXiv.org.
  • Handle: RePEc:arx:papers:2012.11935
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.11935
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    2. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    3. Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío & Senra, Eva, 2011. "Forecast combination through dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 27(2), pages 224-237, April.
    4. A.S.M. Arroyo & A. de Juan Fern¨¢ndez, 2014. "Split-then-Combine Method for out-of-sample Combinations of Forecasts," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 3(1), pages 19-37, April.
    5. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    6. Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, vol. 24(1), pages 163-169.
    7. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2017. "Online learning and forecast combination in unbalanced panels," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 257-288, March.
    10. Billheimer D. & Guttorp P. & Fagan W.F., 2001. "Statistical Interpretation of Species Composition," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1205-1214, December.
    11. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    12. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    2. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    5. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    8. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    9. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    10. Sebastian M. Blanc & Thomas Setzer, 2020. "Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination," Management Science, INFORMS, vol. 66(12), pages 5720-5737, December.
    11. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    12. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    13. Constantin Rudolf Salomo Bürgi, 2023. "How to deal with missing observations in surveys of professional forecasters," Journal of Applied Economics, Taylor & Francis Journals, vol. 26(1), pages 2185975-218, December.
    14. Esteban Fernández-Vázquez & Blanca Moreno, 2017. "Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator," Journal of Geographical Systems, Springer, vol. 19(4), pages 349-370, October.
    15. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    16. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
    17. Pilar Poncela & Eva Senra, 2017. "Measuring uncertainty and assessing its predictive power in the euro area," Empirical Economics, Springer, vol. 53(1), pages 165-182, August.
    18. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    19. Constantin Bürgi & Tara M. Sinclair, 2017. "A nonparametric approach to identifying a subset of forecasters that outperforms the simple average," Empirical Economics, Springer, vol. 53(1), pages 101-115, August.
    20. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.11935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.