IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/200912.html
   My bibliography  Save this paper

Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States

Author

Listed:
  • Rangan Gupta

    (Department of Economics, University of Pretoria)

  • Alain Kabundi

    (Department of Economics and Econometrics, University of Johannesburg)

  • Stephen M. Miller

    (College of Business, University of Las Vegas, Nevada)

Abstract

We implement several Bayesian and classical models to forecast housing prices in 20 US states. In addition to standard vector-autoregressive (VAR) and Bayesian vector autoregressive (BVAR) models, we also include the information content of 308 additional quarterly series in some models. Several approaches exist for incorporating information from a large number of series. We consider two approaches – extracting common factors (principle components) in a Factor-Augmented Vector Autoregressive (FAVAR) or Factor-Augmented Bayesian Vector Autoregressive (FABVAR) models or Bayesian shrinkage in a large-scale Bayesian Vector Autoregressive (LBVAR) models. In addition, we also introduce spatial or causality priors to augment the forecasting models. Using the period of 1976:Q1 to 1994:Q4 as the in-sample period and 1995:Q1 to 2003:Q4 as the out-of-sample horizon, we compare the forecast performance of the alternative models. Based on the average root mean squared error (RMSE) for the one-, two-, three-, and four–quarters-ahead forecasts, we find that one of the factor-augmented models generally outperform the large-scale models in the 20 US states examined in this paper.

Suggested Citation

  • Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:200912
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    2. Clapp, John M. & Tirtiroglu, Dogan, 1994. "Positive feedback trading and diffusion of asset price changes: Evidence from housing transactions," Journal of Economic Behavior & Organization, Elsevier, vol. 24(3), pages 337-355, August.
    3. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    4. Gupta, Rangan & Kabundi, Alain, 2011. "Forecasting Macroeconomic Variables Using Large Datasets: Dynamic Factor Model versus Large-Scale BVARs," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 46(1), pages 23-40.
    5. Ben S. Bernanke & Mark Gertler, 1995. "Inside the Black Box: The Credit Channel of Monetary Policy Transmission," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 27-48, Fall.
    6. Geraint Johnes & Thomas Hyclak, "undated". "House Prices and Regional Labor Markets," Working Papers ec15/93, Department of Economics, University of Lancaster.
    7. Rangan Gupta, 2006. "FORECASTING THE SOUTH AFRICAN ECONOMY WITH VARs AND VECMs," South African Journal of Economics, Economic Society of South Africa, vol. 74(4), pages 611-628, December.
    8. Dua, Pami & Miller, Stephen M & Smyth, David J, 1999. "Using Leading Indicators to Forecast U.S. Home Sales in a Bayesian Vector Autoregressive Framework," The Journal of Real Estate Finance and Economics, Springer, vol. 18(2), pages 191-205, March.
    9. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    10. Matteo Iacoviello & Stefano Neri, 2010. "Housing Market Spillovers: Evidence from an Estimated DSGE Model," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 125-164, April.
    11. Tirtiroglu, Dogan, 1992. "Efficiency in housing markets: Temporal and spatial dimensions," Journal of Housing Economics, Elsevier, vol. 2(3), pages 276-292, September.
    12. Rangan Gupta & Stephen M. Miller, 2009. "The Time-Series Properties of Housing Prices: A Case Study of the Southern California Market," Working Papers 200908, University of Pretoria, Department of Economics.
    13. David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
    14. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    15. Topel, Robert H & Rosen, Sherwin, 1988. "Housing Investment in the United States," Journal of Political Economy, University of Chicago Press, vol. 96(4), pages 718-740, August.
    16. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    17. Rangan Gupta & Stephen Miller, 2012. "The Time-Series Properties of House Prices: A Case Study of the Southern California Market," The Journal of Real Estate Finance and Economics, Springer, vol. 44(3), pages 339-361, April.
    18. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    19. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    20. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    21. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    22. Rangan Gupta & Moses M. Sichei, 2006. "A Bvar Model For The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 74(3), pages 391-409, September.
    23. Meen, Geoffrey, 2002. "The Time-Series Behavior of House Prices: A Transatlantic Divide?," Journal of Housing Economics, Elsevier, vol. 11(1), pages 1-23, March.
    24. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    25. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    26. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    27. James P. LeSage & Zheng Pan, 1995. "Using Spatial Contiguity as Bayesian Prior Information in Regional Forecasting Models," International Regional Science Review, , vol. 18(1), pages 33-53, January.
    28. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    29. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    30. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    31. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    32. Dua, Pami & Miller, Stephen M, 1996. "Forecasting Connecticut Home Sales in a BVAR Framework Using Coincident and Leading Indexes," The Journal of Real Estate Finance and Economics, Springer, vol. 13(3), pages 219-235, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    2. Sarah Drought & Chris McDonald, 2011. "Forecasting house price inflation: a model combination approach," Reserve Bank of New Zealand Discussion Paper Series DP2011/07, Reserve Bank of New Zealand.
    3. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    4. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    5. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
    6. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    2. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    3. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    4. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    5. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.
    6. Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2009. "Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Model," Working Papers 200913, University of Pretoria, Department of Economics.
    7. Rangan Gupta & Stephen Miller, 2012. "The Time-Series Properties of House Prices: A Case Study of the Southern California Market," The Journal of Real Estate Finance and Economics, Springer, vol. 44(3), pages 339-361, April.
    8. Rangan Gupta & Stephen M. Miller & Dylan van Wyk, 2010. "Financial Market Liberalization, Monetary Policy, and Housing Price Dynamics," Working papers 2010-06, University of Connecticut, Department of Economics.
    9. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    10. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    11. Mirriam Chitalu Chama-Chiliba & Rangan Gupta & Nonophile Nkambule & Naomi Tlotlego, 2011. "Forecasting Key Macroeconomic Variables of the South African Economy Using Bayesian Variable Selection," Working Papers 201132, University of Pretoria, Department of Economics.
    12. Balcilar, Mehmet & Gupta, Rangan & Shah, Zahra B., 2011. "An in-sample and out-of-sample empirical investigation of the nonlinearity in house prices of South Africa," Economic Modelling, Elsevier, vol. 28(3), pages 891-899, May.
    13. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    14. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    15. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    16. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    17. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    18. Alain KABUNDI & Rangan GUPTA, 2009. "The Effect of Monetary Policy on House Price Inflation: A Factor Augmented Vector Autoregression (FAVAR) Approach," EcoMod2009 21500048, EcoMod.
    19. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    20. Gupta, Rangan & Jurgilas, Marius & Kabundi, Alain, 2010. "The effect of monetary policy on real house price growth in South Africa: A factor-augmented vector autoregression (FAVAR) approach," Economic Modelling, Elsevier, vol. 27(1), pages 315-323, January.

    More about this item

    Keywords

    Housing prices; Forecasting; Factor Augmented Models; Large-Scale BVAR models;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:200912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.