IDEAS home Printed from https://ideas.repec.org/p/hhs/rbnkwp/0151.html
   My bibliography  Save this paper

Business Survey Data: Do They Help in Forecasting the Macro Economy?

Author

Listed:
  • Hansson, Jesper

    (National Institute of Economic Research)

  • Jansson, Per

    (Monetary Policy Department, Central Bank of Sweden)

  • Löf, Mårten

    (National Institute of Economic Research)

Abstract

In this paper we examine whether data from business tendency surveys are useful for forecasting the macro economy in the short run. Our analyses primarily concern the growth rates of real GDP but we also evaluate forecasts of other variables such as unemployment, price and wage inflation, interest rates, and exchange-rate changes. The starting point is a so-called dynamic factor model (DFM), which is used both as a framework for dimension reduction in forecasting and as a procedure for filtering out unimportant idiosyncratic noise in the underlying survey data. In this way, it is possible to model a rather large number of noise-reduced survey variables in a parsimoniously parameterised vector autoregression (VAR). To assess the forecasting performance of the procedure, comparisons are made with VARs that either use the survey variables directly, are based on macro variables only, or use other popular summary indices of economic activity. As concerns forecasts of GDP growth, the procedure turns out to outperform the competing alternatives in most cases. For the other macro variables, the evidence is more mixed, suggesting in particular that there often is little difference between the DFM-based indicators and the popular summary indices of economic activity.

Suggested Citation

  • Hansson, Jesper & Jansson, Per & Löf, Mårten, 2003. "Business Survey Data: Do They Help in Forecasting the Macro Economy?," Working Paper Series 151, Sveriges Riksbank (Central Bank of Sweden).
  • Handle: RePEc:hhs:rbnkwp:0151
    as

    Download full text from publisher

    File URL: http://www.riksbank.se/upload/8107/WP_151.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001. "An automatic leading indicator of economic activity: forecasting GDP growth for European countries," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    3. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    4. Oller, Lars-Erik & Tallbom, Christer, 1996. "Smooth and timely business cycle indicators for noisy Swedish data," International Journal of Forecasting, Elsevier, vol. 12(3), pages 389-402, September.
    5. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    6. G. Goldrian & J.D. Lindbauer & G. Nerb & B. Ulrich, 2001. "Evaluation and development of confidence indicators based on harmonised business and consumer surveys (Study contracted to IFO, Munich)," European Economy - Economic Papers 2008 - 2015 151, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    7. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    8. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    9. Bruno, Giancarlo & Malgarini, Marco, 2002. "An Indicator of Economic Sentiment for the Italian Economy," MPRA Paper 42331, University Library of Munich, Germany.
    10. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    11. Lindström, Tomas, 2000. "Qualitative Survey Responses and Production over the Business Cycle," Working Paper Series 116, Sveriges Riksbank (Central Bank of Sweden).
    12. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    13. Shin-ichi Fukuda & Takashi Onodera, 2001. "A New Composite Index of Coincident Economic Indicators in Japan: How can we improve the forecast performance? ," CIRJE F-Series CIRJE-F-101, CIRJE, Faculty of Economics, University of Tokyo.
    14. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    15. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksejs Melihovs & Svetlana Rusakova, 2005. "Short-Term Forecasting of Economic Development in Latvia Using Business and Consumer Survey Data," Working Papers 2005/04, Latvijas Banka.
    2. Lise Pichette, 2012. "Extracting Information from the Business Outlook Survey Using Statistical Approaches," Discussion Papers 12-8, Bank of Canada.
    3. Piotr Białowolski & Tomasz Kuszewski & Bartosz Witkowski, 2010. "Business Survey Data in Forecasting Macroeconomic Indicators with Combined Forecasts," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 4(4), December.
    4. Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
    5. Christophe Van Nieuwenhuyze, 2006. "A generalised dynamic factor model for the Belgian economy - Useful business cycle indicators and GDP growth forecasts," Working Paper Research 80, National Bank of Belgium.
    6. Piotr Białowolski & Tomasz Kuszewski & Bartosz Witkowski, 2012. "Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 6(1), March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
    2. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    3. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    4. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    5. Serati, Massimiliano & Manera, Matteo & Plotegher, Michele, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," International Energy Markets Working Papers 44426, Fondazione Eni Enrico Mattei (FEEM).
    6. Curran, Declan & Funke, Michael, 2006. "Taking the temperature: forecasting GDP growth for mainland in China," BOFIT Discussion Papers 6/2006, Bank of Finland Institute for Emerging Economies (BOFIT).
    7. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    8. repec:zbw:bofitp:2006_006 is not listed on IDEAS
    9. Declan Curran & Michael Funke, 2006. "Taking the Temperature - Forecasting GDP Growth for Mainland China," Quantitative Macroeconomics Working Papers 20606, Hamburg University, Department of Economics.
    10. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    11. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    12. Hwee Kwan Chow & Keen Meng Choy, 2009. "Analyzing and forecasting business cycles in a small open economy: A dynamic factor model for Singapore," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2009(1), pages 19-41.
    13. Schumacher Christian & Dreger Christian, 2004. "Estimating Large-Scale Factor Models for Economic Activity in Germany: Do They Outperform Simpler Models? / Die Schätzung von großen Faktormodellen für die deutsche Volkswirtschaft: Übertreffen sie ei," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 224(6), pages 731-750, December.
    14. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    15. repec:dgr:rugccs:200312 is not listed on IDEAS
    16. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    17. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    18. Donatella Baiardi & Carluccio Bianchi, 2010. "Un Indicatore di Attività Economica per la Lombardia e per le Province di Milano e Pavia," Quaderni di Dipartimento 130, University of Pavia, Department of Economics and Quantitative Methods.
    19. Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
    20. Massimiliano Marcellino & George Kapetanios, 2006. "The Role of Search Frictions and Bargaining for Inflation Dynamics," Working Papers 305, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    21. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    22. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.

    More about this item

    Keywords

    Business survey data; Dynamic factor models; Macroeconomic forecasting;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:rbnkwp:0151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lena Löfgren (email available below). General contact details of provider: https://edirc.repec.org/data/rbgovse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.