IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i1p170-177.html
   My bibliography  Save this article

Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)

Author

Listed:
  • Graefe, Andreas

Abstract

While combining forecasts is well-known to reduce error, the question of how to best combine forecasts remains. Prior research suggests that combining is most beneficial when relying on diverse forecasts that incorporate different information. Here, I provide evidence in support of this hypothesis by analyzing data from the PollyVote project, which has published combined forecasts of the popular vote in U.S. presidential elections since 2004. Prior to the 2020 election, the PollyVote revised its original method of combining forecasts by, first, restructuring individual forecasts based on their underlying information and, second, adding naïve forecasts as a new component method. On average across the last 100 days prior to the five elections from 2004 to 2020, the revised PollyVote reduced the error of the original specification by eight percent and, with a mean absolute error (MAE) of 0.8 percentage points, was more accurate than any of its component forecasts. The results suggest that, when deciding about which forecasts to include in the combination, forecasters should be more concerned about the component forecasts’ diversity than their historical accuracy.

Suggested Citation

  • Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:170-177
    DOI: 10.1016/j.ijforecast.2021.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920702100159X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2021.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Graefe, 2017. "Prediction Market Performance in the 2016 U.S. Presidential Election," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 45, pages 38-42, Spring.
    2. Richard P. Larrick & Jack B. Soll, 2006. "Erratum--Intuitions About Combining Opinions: Misappreciation of the Averaging Principle," Management Science, INFORMS, vol. 52(2), pages 309-310, February.
    3. Stephen Haynes & Joe Stone, 2008. "A disaggregate approach to economic models of voting in U.S. presidential elections: forecasts of the 2008 election," Economics Bulletin, AccessEcon, vol. 4(28), pages 1-11.
    4. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    5. Hsieh, John Fuh-Sheng & Lacy, Dean & Niou, Emerson M S, 1998. "Retrospective and Prospective Voting in a One-Party-Dominant Democracy: Taiwan's 1996 Presidential Election," Public Choice, Springer, vol. 97(3), pages 383-399, December.
    6. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    7. Douglas Hibbs, 2000. "Bread and Peace Voting in U.S. Presidential Elections," Public Choice, Springer, vol. 104(1), pages 149-180, July.
    8. Lichtman, Allan J., 2008. "The keys to the white house: An index forecast for 2008," International Journal of Forecasting, Elsevier, vol. 24(2), pages 301-309.
    9. repec:ebl:ecbull:v:4:y:2008:i:28:p:1-11 is not listed on IDEAS
    10. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    11. Jay A. DeSart & Thomas M. Holbrook, 2003. "Statewide Trial‐Heat Polls and the 2000 Presidential Election: A Forecast Model," Social Science Quarterly, Southwestern Social Science Association, vol. 84(3), pages 561-573, September.
    12. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
    13. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    14. Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
    15. Armstrong, J. Scott & Graefe, Andreas, 2011. "Predicting elections from biographical information about candidates: A test of the index method," Journal of Business Research, Elsevier, vol. 64(7), pages 699-706, July.
    16. Ray C. Fair, 2009. "Presidential and Congressional Vote‐Share Equations," American Journal of Political Science, John Wiley & Sons, vol. 53(1), pages 55-72, January.
    17. Graefe, Andreas, 2019. "Accuracy of German federal election forecasts, 2013 & 2017," International Journal of Forecasting, Elsevier, vol. 35(3), pages 868-877.
    18. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    19. Elinder, Mikael & Jordahl, Henrik & Poutvaara, Panu, 2015. "Promises, policies and pocketbook voting," European Economic Review, Elsevier, vol. 75(C), pages 177-194.
    20. repec:cup:judgdm:v:13:y:2018:i:4:p:334-344 is not listed on IDEAS
    21. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    22. Richard P. Larrick & Jack B. Soll, 2006. "Intuitions About Combining Opinions: Misappreciation of the Averaging Principle," Management Science, INFORMS, vol. 52(1), pages 111-127, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    2. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    3. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    4. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
    7. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzan, Alfred G., 2017. "Assessing the 2016 U.S. Presidential Election Popular Vote Forecasts," MPRA Paper 83282, University Library of Munich, Germany.
    8. Andreas Graefe & Kesten C Green & J Scott Armstrong, 2019. "Accuracy gains from conservative forecasting: Tests using variations of 19 econometric models to predict 154 elections in 10 countries," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
    9. Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
    10. Andreas Graefe, 2018. "Predicting elections: Experts, polls, and fundamentals," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(4), pages 334-344, July.
    11. Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.
    12. Graefe, Andreas, 2019. "Accuracy of German federal election forecasts, 2013 & 2017," International Journal of Forecasting, Elsevier, vol. 35(3), pages 868-877.
    13. Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
    14. repec:cup:judgdm:v:13:y:2018:i:4:p:334-344 is not listed on IDEAS
    15. repec:cup:judgdm:v:10:y:2015:i:3:p:265-276 is not listed on IDEAS
    16. Cem Peker, 2023. "Extracting the collective wisdom in probabilistic judgments," Theory and Decision, Springer, vol. 94(3), pages 467-501, April.
    17. Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
    18. Graefe, Andreas, 2015. "Improving forecasts using equally weighted predictors," Journal of Business Research, Elsevier, vol. 68(8), pages 1792-1799.
    19. Peter Bednarik & Thomas Schultze, 2015. "The effectiveness of imperfect weighting in advice taking," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 10(3), pages 265-276, May.
    20. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    21. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    22. repec:cup:judgdm:v:8:y:2013:i:2:p:91-105 is not listed on IDEAS
    23. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    24. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:170-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.