IDEAS home Printed from https://ideas.repec.org/e/c/pas73.html
   My authors  Follow this author

Manabu Asai

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Benjamin Poignard & Manabu Asai, 2021. "Estimation of High Dimensional Vector Autoregression via Sparse Precision Matrix," Discussion Papers in Economics and Business 21-03, Osaka University, Graduate School of Economics.

    Cited by:

    1. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.

  2. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "Forecasting Volatility and Co-volatility of Crude Oil and Gold Futures: Effects of Leverage, Jumps, Spillovers, and Geopolitical Risks," Working Papers 201951, University of Pretoria, Department of Economics.

    Cited by:

    1. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    2. Assaf, Ata & Charif, Husni & Mokni, Khaled, 2021. "Dynamic connectedness between uncertainty and energy markets: Do investor sentiments matter?," Resources Policy, Elsevier, vol. 72(C).
    3. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
    4. Bouri, Elie & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "Forecasting power of infectious diseases-related uncertainty for gold realized variance," Finance Research Letters, Elsevier, vol. 42(C).
    5. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta, 2021. "Oil Tail Risks and the Forecastability of the Realized Variance of Oil-Price: Evidence from Over 150 Years of Data," Working Papers 202146, University of Pretoria, Department of Economics.
    6. Zheng, Jinlin & Wen, Baoyu & Jiang, Yaohui & Wang, Xiaohan & Shen, Yue, 2023. "Risk spillovers across geopolitical risk and global financial markets," Energy Economics, Elsevier, vol. 127(PA).
    7. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    8. Asai Manabu & So Mike K. P., 2023. "Realized BEKK-CAW Models," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 49-77, January.
    9. Le, Thanh Ha, 2023. "Quantile time-frequency connectedness between cryptocurrency volatility and renewable energy volatility during the COVID-19 pandemic and Ukraine-Russia conflicts," Renewable Energy, Elsevier, vol. 202(C), pages 613-625.
    10. Afees A. Salisu & Rangan Gupta & Sayar Karmakar & Sonali Das, 2021. "Forecasting Output Growth of Advanced Economies Over Eight Centuries: The Role of Gold Market Volatility as a Proxy of Global Uncertainty," Working Papers 202133, University of Pretoria, Department of Economics.
    11. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Nino, La Nina, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Working Papers 202138, University of Pretoria, Department of Economics.
    12. Nonejad, Nima, 2022. "Forecasting crude oil price volatility out-of-sample using news-based geopolitical risk index: What forms of nonlinearity help improve forecast accuracy the most?," Finance Research Letters, Elsevier, vol. 46(PA).
    13. Li, Yingli & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic spillovers of geopolitical risks and gold prices: New evidence from 18 emerging economies," Resources Policy, Elsevier, vol. 70(C).
    14. Syed Kumail Abbas Rizvi & Bushra Naqvi & Nawazish Mirza, 2022. "Is green investment different from grey? Return and volatility spillovers between green and grey energy ETFs," Annals of Operations Research, Springer, vol. 313(1), pages 495-524, June.
    15. Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024. "Stock market bubbles and the realized volatility of oil price returns," Energy Economics, Elsevier, vol. 132(C).
    16. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch & Seong-Min Yoon, 2020. "OPEC News and Jumps in the Oil Market," Working Papers 202053, University of Pretoria, Department of Economics.
    17. Shahbaz, Muhammad & Khan, Asad ul Islam & Mubarak, Muhammad Shujaat, 2023. "Roling-window bounds testing approach to analyze the relationship between oil prices and metal prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 388-395.
    18. Long, Shaobo & Guo, Jiaqi, 2022. "Infectious disease equity market volatility, geopolitical risk, speculation, and commodity returns: Comparative analysis of five epidemic outbreaks," Research in International Business and Finance, Elsevier, vol. 62(C).
    19. Ngo, Vu Minh & Nguyen, Phuc Van & Hoang, Yen Hai, 2024. "The impacts of geopolitical risks on gold, oil and financial reserve management," Resources Policy, Elsevier, vol. 90(C).
    20. Wang, Zhe & Teng, Yin-Pei & Wu, Shuzhao & Liu, Yuxiang & Liu, Xianchang, 2023. "Geopolitical risk, financial system and natural resources extraction: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    21. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    22. Yanqiong Liu & Zhenghui Li & Yanyan Yao & Hao Dong, 2021. "Asymmetry of Risk Evolution in Crude Oil Market: From the Perspective of Dual Attributes of Oil," Energies, MDPI, vol. 14(13), pages 1-22, July.
    23. Sun, Guanglin & Li, Jianfeng & Shang, Zezhong, 2022. "Return and volatility linkages between international energy markets and Chinese commodity market," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    24. Balcilar, Mehmet & Gupta, Rangan & Nel, Jacobus, 2022. "Rare disaster risks and gold over 700 years: Evidence from nonparametric quantile regressions," Resources Policy, Elsevier, vol. 79(C).
    25. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Working Papers 202175, University of Pretoria, Department of Economics.
    26. Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2022. "Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data," Working Papers 202201, University of Pretoria, Department of Economics.
    27. Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Energies, MDPI, vol. 14(14), pages 1-15, July.
    28. Zhang, Jilu & Guxue, Kaicheng, 2024. "Fostering sustainability: Exploring natural resources, mineral resources, and their impact on carbon reduction, economic growth," Resources Policy, Elsevier, vol. 92(C).
    29. Xin Sheng & Won Joong Kim & Rangan Gupta, 2021. "The Impacts of Oil Price Volatility on Financial Stress: Is the COVID-19 Period Different?," Working Papers 202184, University of Pretoria, Department of Economics.
    30. Thanoj K. Muddana & Komal S.R. Bhimireddy & Anandamayee Majumdar & Rangan Gupta, 2024. "Forecasting Gold Returns Volatility Over 1258-2023: The Role of Moments," Working Papers 202421, University of Pretoria, Department of Economics.
    31. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    32. Yang, Cai & Niu, Zibo & Gao, Wang, 2022. "The time-varying effects of trade policy uncertainty and geopolitical risks shocks on the commodity market prices: Evidence from the TVP-VAR-SV approach," Resources Policy, Elsevier, vol. 76(C).
    33. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta, 2021. "Geopolitical Risk and Forecastability of Tail Risk in the Oil Market: Evidence from Over a Century of Monthly Data," Working Papers 202122, University of Pretoria, Department of Economics.
    34. Foglia, Matteo & Palomba, Giulio & Tedeschi, Marco, 2023. "Disentangling the geopolitical risk and its effects on commodities. Evidence from a panel of G8 countries," Resources Policy, Elsevier, vol. 85(PB).
    35. Usha Rekha Chinthapalli, 2021. "A Comparative Analysis on Probability of Volatility Clusters on Cryptocurrencies, and FOREX Currencies," JRFM, MDPI, vol. 14(7), pages 1-23, July.
    36. O-Chia Chuang & Rangan Gupta & Christian Pierdzioch & Buliao Shu, 2024. "Financial Uncertainty and Gold Market Volatility: Evidence from a GARCH-MIDAS Approach with Variable Selection," Working Papers 202441, University of Pretoria, Department of Economics.
    37. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    38. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    39. Luo, Keyu & Guo, Qiang & Li, Xiafei, 2022. "Can the return connectedness indices from grey energy to natural gas help to forecast the natural gas returns?," Energy Economics, Elsevier, vol. 109(C).
    40. Qin, Yun & Hong, Kairong & Chen, Jinyu & Zhang, Zitao, 2020. "Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions," Energy Economics, Elsevier, vol. 90(C).
    41. Ahdi Noomen Ajmi & Roula Inglesi-Lotz, 2021. "Revisiting the Kuznets Curve Hypothesis for Tunisia: Carbon Dioxide vs. Ecological Footprint," Working Papers 202171, University of Pretoria, Department of Economics.
    42. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    43. Tamilselvan, M. & Halder, Abhishek & Kannadhasan, M., 2024. "Exploring the ingredients, mixtures, and inclinations of geopolitical risk," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 187-206.
    44. Li, Xiaoqian & Ma, Xiaoqi, 2023. "Jumps and gold futures volatility prediction," Finance Research Letters, Elsevier, vol. 58(PC).
    45. Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
    46. Chatziantoniou, Ioannis & Gabauer, David & Perez de Gracia, Fernando, 2022. "Tail risk connectedness in the refined petroleum market: A first look at the impact of the COVID-19 pandemic," Energy Economics, Elsevier, vol. 111(C).
    47. Mengxi He & Yaojie Zhang & Yudong Wang & Danyan Wen, 2024. "Modelling and forecasting crude oil price volatility with climate policy uncertainty," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    48. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2021. "The time-varying effects of financial and geopolitical uncertainties on commodity market dynamics: A TVP-SVAR-SV analysis," Resources Policy, Elsevier, vol. 72(C).
    49. Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
    50. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    51. Mo, Bin & Nie, He & Zhao, Rongjie, 2024. "Dynamic nonlinear effects of geopolitical risks on commodities: Fresh evidence from quantile methods," Energy, Elsevier, vol. 288(C).
    52. Abid, Ilyes & Dhaoui, Abderrazak & Kaabia, Olfa & Tarchella, Salma, 2023. "Geopolitical risk on energy, agriculture, livestock, precious and industrial metals: New insights from a Markov Switching model," Resources Policy, Elsevier, vol. 85(PA).
    53. Cheng, Sheng & Deng, MingJie & Liang, Ruibin & Cao, Yan, 2023. "Asymmetric volatility spillover among global oil, gold, and Chinese sectors in the presence of major emergencies," Resources Policy, Elsevier, vol. 82(C).
    54. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    55. Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market volatility: A newspaper-based predictor regarding petroleum market volatility," Resources Policy, Elsevier, vol. 79(C).
    56. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    57. Gupta, Rangan & Pierdzioch, Christian, 2022. "Climate risks and forecastability of the realized volatility of gold and other metal prices," Resources Policy, Elsevier, vol. 77(C).
    58. Yan Ding & Yue Liu & Pierre Failler, 2022. "The Impact of Uncertainties on Crude Oil Prices: Based on a Quantile-on-Quantile Method," Energies, MDPI, vol. 15(10), pages 1-35, May.
    59. Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022. "Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?," Energy Economics, Elsevier, vol. 114(C).
    60. Li, Yingli & Huang, Jianbai & Gao, Wang & Zhang, Hongwei, 2021. "Analyzing the time-frequency connectedness among oil, gold prices and BRICS geopolitical risks," Resources Policy, Elsevier, vol. 73(C).
    61. Zixin Liu & Shuguang Zhang, 2024. "RETRACTED ARTICLE: How does environmental performance ensured energy transition? Impact of ecological change," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-27, April.
    62. Choi, Sun-Yong, 2022. "Evidence from a multiple and partial wavelet analysis on the impact of geopolitical concerns on stock markets in North-East Asian countries," Finance Research Letters, Elsevier, vol. 46(PB).
    63. Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
    64. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "The Role of Global Economic Conditions in Forecasting Gold Market Volatility: Evidence from a GARCH-MIDAS Approach," Working Papers 202043, University of Pretoria, Department of Economics.
    65. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    66. Văn, Lê & Bảo, Nguyễn Khắc Quốc, 2022. "The relationship between global stock and precious metals under Covid-19 and happiness perspectives," Resources Policy, Elsevier, vol. 77(C).
    67. Elie Bouri & Rangan Gupta & Jacobus Nel & Sisa Shiba, 2022. "Contagious Diseases and Gold: Over 700 Years of Evidence from Quantile Regressions," Working Papers 202233, University of Pretoria, Department of Economics.
    68. Zhang, Jialin & Shi, Shaodong, 2023. "Extraction of natural resources and geopolitical risk revisited: A novel perspective of research and development with financial development," Resources Policy, Elsevier, vol. 85(PA).
    69. Zhang, Li & Wang, Lu & Peng, Lijuan & Luo, Keyu, 2023. "Measuring the response of clean energy stock price volatility to extreme shocks," Renewable Energy, Elsevier, vol. 206(C), pages 1289-1300.
    70. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    71. Song, Yuping & Huang, Jiefei & Zhang, Qichao & Xu, Yang, 2024. "Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China," Economic Modelling, Elsevier, vol. 136(C).
    72. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    73. Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
    74. Zhao, Jing, 2023. "Time-varying impact of geopolitical risk on natural resources prices: Evidence from the hybrid TVP-VAR model with large system," Resources Policy, Elsevier, vol. 82(C).
    75. Borg, Elin & Kits, Ilya & Junttila, Juha & Uddin, Gazi Salah, 2022. "Dependence between renewable energy related critical metal futures and producer equity markets across varying market conditions," Renewable Energy, Elsevier, vol. 190(C), pages 879-892.
    76. Evrim Mandaci, Pınar & Azimli, Asil & Mandaci, Nazif, 2023. "The impact of geopolitical risks on connectedness among natural resource commodities: A quantile vector autoregressive approach," Resources Policy, Elsevier, vol. 85(PA).

  3. Asai, M. & Gupta, R. & McAleer, M.J., 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Econometric Institute Research Papers EI2019-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
    2. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    3. Bouri, Elie & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "Forecasting power of infectious diseases-related uncertainty for gold realized variance," Finance Research Letters, Elsevier, vol. 42(C).
    4. Hanif, Waqas & Mensi, Walid & Vo, Xuan Vinh & BenSaïda, Ahmed & Hernandez, Jose Arreola & Kang, Sang Hoon, 2023. "Dependence and risk management of portfolios of metals and agricultural commodity futures," Resources Policy, Elsevier, vol. 82(C).
    5. Afees A. Salisu & Rangan Gupta & Sayar Karmakar & Sonali Das, 2021. "Forecasting Output Growth of Advanced Economies Over Eight Centuries: The Role of Gold Market Volatility as a Proxy of Global Uncertainty," Working Papers 202133, University of Pretoria, Department of Economics.
    6. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Nino, La Nina, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Working Papers 202138, University of Pretoria, Department of Economics.
    7. Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024. "Stock market bubbles and the realized volatility of oil price returns," Energy Economics, Elsevier, vol. 132(C).
    8. Matteo Bonato & Rangan Gupta & Chi Keung Marco Lau & Shixuan Wang, 2019. "Moments-Based Spillovers across Gold and Oil Markets," Working Papers 201966, University of Pretoria, Department of Economics.
    9. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch & Seong-Min Yoon, 2020. "OPEC News and Jumps in the Oil Market," Working Papers 202053, University of Pretoria, Department of Economics.
    10. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Working Papers 202423, University of Pretoria, Department of Economics.
    11. Shahbaz, Muhammad & Khan, Asad ul Islam & Mubarak, Muhammad Shujaat, 2023. "Roling-window bounds testing approach to analyze the relationship between oil prices and metal prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 388-395.
    12. Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    13. Balcilar, Mehmet & Gupta, Rangan & Nel, Jacobus, 2022. "Rare disaster risks and gold over 700 years: Evidence from nonparametric quantile regressions," Resources Policy, Elsevier, vol. 79(C).
    14. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Working Papers 202175, University of Pretoria, Department of Economics.
    15. Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Energies, MDPI, vol. 14(14), pages 1-15, July.
    16. Xin Sheng & Won Joong Kim & Rangan Gupta, 2021. "The Impacts of Oil Price Volatility on Financial Stress: Is the COVID-19 Period Different?," Working Papers 202184, University of Pretoria, Department of Economics.
    17. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    18. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    19. Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
    20. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    21. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    22. Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2021. "A note on oil price shocks and the forecastability of gold realized volatility," Applied Economics Letters, Taylor & Francis Journals, vol. 28(21), pages 1889-1897, December.
    23. Gupta, Rangan & Pierdzioch, Christian, 2022. "Climate risks and forecastability of the realized volatility of gold and other metal prices," Resources Policy, Elsevier, vol. 77(C).
    24. Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022. "Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?," Energy Economics, Elsevier, vol. 114(C).
    25. Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
    26. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "The Role of Global Economic Conditions in Forecasting Gold Market Volatility: Evidence from a GARCH-MIDAS Approach," Working Papers 202043, University of Pretoria, Department of Economics.
    27. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    28. Song, Yuping & Huang, Jiefei & Zhang, Qichao & Xu, Yang, 2024. "Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China," Economic Modelling, Elsevier, vol. 136(C).
    29. Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.

  4. Asai, M. & McAleer, M.J., 2018. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Econometric Institute Research Papers 2018-005/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Xu, Yongdeng, 2024. "Extended multivariate EGARCH model: A model for zero†return and negative spillovers," Cardiff Economics Working Papers E2024/24, Cardiff University, Cardiff Business School, Economics Section.

  5. Manabu Asai & Shelton Peiris & Michael McAleer & David E. Allen, 2018. "Cointegrated Dynamics for A Generalized Long Memory Process: An Application to Interest Rates," Documentos de Trabajo del ICAE 2018-22, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.

    Cited by:

    1. Paul M. Beaumont & Aaron D. Smallwood, 2024. "Conditional sum of squares estimation of k-factor GARMA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 501-543, September.

  6. Asai, M. & Peiris, S. & McAleer, M.J. & Allen, D.E., 2018. "Cointegrated Dynamics for A Generalized Long Memory Process," Econometric Institute Research Papers EI 2018-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.

  7. Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    2. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    3. Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Tinbergen Institute Discussion Papers 17-051/III, Tinbergen Institute.
    4. Zea Bermudez, Patrícia de, 2019. "Data cloning estimation for asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 28214, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Zhouwei Wang & Qicheng Zhao & Min Zhu & Tao Pang, 2020. "Jump Aggregation, Volatility Prediction, and Nonlinear Estimation of Banks’ Sustainability Risk," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    6. Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Jia Liu, 2021. "A Bayesian Semiparametric Realized Stochastic Volatility Model," JRFM, MDPI, vol. 14(12), pages 1-22, December.
    8. Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," MPRA Paper 118459, University Library of Munich, Germany.
    9. Schatz, Michael & Wheatley, Spencer & Sornette, Didier, 2022. "The ARMA Point Process and its Estimation," Econometrics and Statistics, Elsevier, vol. 24(C), pages 164-182.
    10. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    11. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.

  8. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    2. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    3. Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Tinbergen Institute Discussion Papers 17-051/III, Tinbergen Institute.
    4. Zea Bermudez, Patrícia de, 2019. "Data cloning estimation for asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 28214, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Massoud Moslehpour & Shin Hung Pan & Aviral Kumar Tiwari & Wing Keung Wong, 2021. "Editorial in Honour of Professor Michael McAleer," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(4), pages 1-14, December.
    6. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    7. Zhouwei Wang & Qicheng Zhao & Min Zhu & Tao Pang, 2020. "Jump Aggregation, Volatility Prediction, and Nonlinear Estimation of Banks’ Sustainability Risk," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    8. Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Lorraine Muguto & Paul-Francois Muzindutsi, 2022. "A Comparative Analysis of the Nature of Stock Return Volatility in BRICS and G7 Markets," JRFM, MDPI, vol. 15(2), pages 1-27, February.
    10. Jia Liu, 2021. "A Bayesian Semiparametric Realized Stochastic Volatility Model," JRFM, MDPI, vol. 14(12), pages 1-22, December.
    11. Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," MPRA Paper 118459, University Library of Munich, Germany.
    12. Didit Budi Nugroho & Takayuki Morimoto, 2019. "Incorporating Realized Quarticity into a Realized Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 495-528, December.
    13. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.

  9. Asai, M. & McAleer, M.J., 2017. "Forecasting the Volatility of Nikkei 225 Futures," Econometric Institute Research Papers TI 2017-017/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Masaaki Kijima & Christopher Ting, 2019. "Market Price Of Trading Liquidity Risk And Market Depth," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-36, December.

  10. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Tinbergen Institute Discussion Papers 17-051/III, Tinbergen Institute.
    2. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
    3. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    4. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    6. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    7. Ilya Archakov & Peter Reinhard Hansen, 2020. "A New Parametrization of Correlation Matrices," Papers 2012.02395, arXiv.org.
    8. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    9. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    10. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    11. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.

  11. Peiris, S. & Asai, M. & McAleer, M.J., 2016. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," Econometric Institute Research Papers EI2016-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Lahmiri, Salim & Bekiros, Stelios, 2020. "Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.

  12. Asai, M. & McAleer, M.J., 2016. "Asymptotic Theory for Extended Asymmetric Multivariate GARCH Processes," Econometric Institute Research Papers EI2016-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

  13. Asai, M. & McAleer, M.J., 2015. "The Impact of Jumps and Leverage in Forecasting Co-Volatility," Econometric Institute Research Papers EI 2015-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Cited by:

    1. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    2. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    3. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Working Papers 201925, University of Pretoria, Department of Economics.
    4. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    5. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    6. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Working Papers 202423, University of Pretoria, Department of Economics.
    7. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    9. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    10. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    11. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    12. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.

  14. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.

    Cited by:

    1. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    2. Manabu Asai & Michael McAleer, 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Tinbergen Institute Discussion Papers 16-065/III, Tinbergen Institute.
    3. Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    5. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Andrea Bucci & Michele Palma & Chao Zhang, 2024. "Geometric Deep Learning for Realized Covariance Matrix Forecasting," Papers 2412.09517, arXiv.org.
    7. Shiqing Ling & Michael McAleer & Howell Tong, 2015. "Frontiers in Time Series and Financial Econometrics: An Overview," Tinbergen Institute Discussion Papers 15-026/III, Tinbergen Institute.
    8. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    9. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    10. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    11. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    12. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    13. Xin Jin & Jia Liu & Qiao Yang, 2021. "Does the Choice of Realized Covariance Measures Empirically Matter? A Bayesian Density Prediction Approach," Econometrics, MDPI, vol. 9(4), pages 1-22, December.
    14. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    15. Ling, S. & McAleer, M.J. & Tong, H., 2015. "Frontiers in Time Series and Financial Econometrics," Econometric Institute Research Papers EI 2015-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    17. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    19. Zhu, Hui-Ming & Li, ZhaoLai & You, WanHai & Zeng, Zhaofa, 2015. "Revisiting the asymmetric dynamic dependence of stock returns: Evidence from a quantile autoregression model," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 142-153.
    20. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    21. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.

  15. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.

    Cited by:

    1. Chia-Lin Chang & Michael McAleer, 2014. "Econometric Analysis of Financial Derivatives: An Overview," Working Papers in Economics 14/29, University of Canterbury, Department of Economics and Finance.
    2. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
    3. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    4. Da Fonseca, José, 2016. "On moment non-explosions for Wishart-based stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 889-894.
    5. Chang, C-L. & McAleer, M.J., 2014. "Econometric Analysis of Financial Derivatives," Econometric Institute Research Papers EI 2015-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Hong, Hui & Bian, Zhicun & Chen, Naiwei, 2020. "Leverage effect on stochastic volatility for option pricing in Hong Kong: A simulation and empirical study," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Baule, Rainer & Shkel, David, 2021. "Model risk and model choice in the case of barrier options and bonus certificates," Journal of Banking & Finance, Elsevier, vol. 133(C).
    8. Bahmani, Mohammad & Sheikh Ahmadi, Sayed Amir & Sanginabadi, Bahram, 2013. "Return Volatility and Asymmetric News of Computer Industry stocks in Tehran Stock Exchange (TEX)," MPRA Paper 70793, University Library of Munich, Germany, revised 15 Mar 2014.
    9. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

  16. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," KIER Working Papers 848, Kyoto University, Institute of Economic Research.

    Cited by:

    1. Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.

  17. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Working Papers in Economics 12/04, University of Canterbury, Department of Economics and Finance.

    Cited by:

    1. Shawkat Hammoudeh & Michael McAleer, 2014. "Advances in Financial Risk Management andEconomic Policy Uncertainty: An Overview," Documentos de Trabajo del ICAE 2014-17, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Chen, Qiang & Gong, Yuting, 2019. "The economic sources of China's CSI 300 spot and futures volatilities before and after the 2015 stock market crisis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 102-121.
    3. Benjamin Poignard & Manabu Asaiz, 2020. "A Penalised OLS Framework for High-Dimensional Multivariate Stochastic Volatility Models," Discussion Papers in Economics and Business 20-02, Osaka University, Graduate School of Economics.
    4. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    5. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    6. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    7. Lin, Tiantian & Liu, Dehong & Zhang, Lili & Lung, Peter, 2019. "The information content of realized volatility of sector indices in China’s stock market," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 625-640.

  18. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.

    Cited by:

    1. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
    2. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
    3. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    4. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    6. Jouchi Nakajima, 2017. "Bayesian analysis of multivariate stochastic volatility with skew return distribution," Econometric Reviews, Taylor & Francis Journals, vol. 36(5), pages 546-562, May.
    7. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    8. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    9. Ilya Archakov & Peter Reinhard Hansen, 2020. "A New Parametrization of Correlation Matrices," Papers 2012.02395, arXiv.org.
    10. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    11. Tian, Shuairu & Hamori, Shigeyuki, 2015. "Modeling interest rate volatility: A Realized GARCH approach," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 158-171.
    12. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    13. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    14. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    15. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    16. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    17. Wu, Xinyu & Wang, Xiaona, 2020. "Forecasting volatility using realized stochastic volatility model with time-varying leverage effect," Finance Research Letters, Elsevier, vol. 34(C).

  19. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2010. "Block Structure Multivariate Stochastic Volatility Models," Working Papers in Economics 10/24, University of Canterbury, Department of Economics and Finance.

    Cited by:

    1. Shawkat Hammoudeh & Michael McAleer, 2014. "Advances in Financial Risk Management andEconomic Policy Uncertainty: An Overview," Documentos de Trabajo del ICAE 2014-17, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
    3. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CARF F-Series CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Forecasting Realized (Co)Variances with a Bloc Structure Wishart Autoregressive Model," Working Papers on Finance 1211, University of St. Gallen, School of Finance.
    5. Haroon Mumtaz & Francesco Zanetti, 2013. "The Impact of the Volatility of Monetary Policy Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(4), pages 535-558, June.
    6. Bonato, Mateo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Risk Spillovers in International Equity Portfolios," Working Papers on Finance 1214, University of St. Gallen, School of Finance.
    7. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
    8. Guilherme Valle Moura & João Frois Caldeira & André Santos, 2014. "Seleção De Carteiras Utilizando O Modelofama-French-Carhart," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 117, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    9. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
    10. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    11. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
    13. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    14. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    15. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    16. Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
    17. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    18. Jonas E. Arias & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Macroeconomic Forecasting and Variable Ordering in Multivariate Stochastic Volatility Models," Working Papers 21-21, Federal Reserve Bank of Philadelphia.
    19. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    20. Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
    21. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    22. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    23. Diks, Cees & Panchenko, Valentyn & Sokolinskiy, Oleg & van Dijk, Dick, 2014. "Comparing the accuracy of multivariate density forecasts in selected regions of the copula support," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 79-94.
    24. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    25. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    26. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    27. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    28. Geert Mesters & Bernd Schwaab & Siem Jan Koopman, 2014. "A Dynamic Yield Curve Model with Stochastic Volatility and Non-Gaussian Interactions: An Empirical Study of Non-standard Monetary Policy in the Euro Area," Tinbergen Institute Discussion Papers 14-071/III, Tinbergen Institute.
    29. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    30. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    31. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    32. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    33. Sujay K Mukhoti, "undated". "Dynamic Feedback Effect And Skewness In Non-Stationary Stochastic Volatility Model With Leverage," Working papers 145, Indian Institute of Management Kozhikode.
    34. Fu, Hsuan & Luger, Richard, 2022. "Multiple testing of the forward rate unbiasedness hypothesis across currencies," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 232-245.

  20. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," Working Papers in Economics 10/60, University of Canterbury, Department of Economics and Finance.

    Cited by:

    1. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    2. Manabu Asai & Michael McAleer, 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Tinbergen Institute Discussion Papers 16-065/III, Tinbergen Institute.
    3. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
    4. Shelton Peiris & Manabu Asai & Michael McAleer, 2016. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," Tinbergen Institute Discussion Papers 16-044/III, Tinbergen Institute.
    5. Gagnon, Marie-Hélène & Power, Gabriel J. & Toupin, Dominique, 2016. "International stock market cointegration under the risk-neutral measure," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 243-255.
    6. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
    8. Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Documentos de Trabajo del ICAE 2017-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    9. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    10. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    11. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
    13. Junru Zhang & Hadrian Geri Djajadikerta & Zhaoyong Zhang, 2018. "Does Sustainability Engagement Affect Stock Return Volatility? Evidence from the Chinese Financial Market," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    14. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
    15. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    16. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    17. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    18. Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Carl Lönnbark, 2016. "Asymmetry with respect to the memory in stock market volatilities," Empirical Economics, Springer, vol. 50(4), pages 1409-1419, June.
    20. Maki, Daiki, 2024. "Forecasting downside and upside realized volatility: The role of asymmetric information," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    21. Cathy Ning & Dinghai Xu & Tony Wirjanto, 2014. "Is Volatility Clustering of Asset Returns Asymmetric?," Working Papers 050, Toronto Metropolitan University, Department of Economics.
    22. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    23. Jiqian Wang & Feng Ma & M.I.M. Wahab & Dengshi Huang, 2021. "Forecasting China's Crude Oil Futures Volatility: The Role of the Jump, Jumps Intensity, and Leverage Effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 921-941, August.
    24. Li, Wenlan & Cheng, Yuxiang & Fang, Qiang, 2020. "Forecast on silver futures linked with structural breaks and day-of-the-week effect," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    25. Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
    26. Rangika Peiris & Minh-Ngoc Tran & Chao Wang & Richard Gerlach, 2024. "Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model," Papers 2408.13588, arXiv.org.
    27. Li, Yan & Huynh, Luu Duc Toan & Xu, Yongan & Liang, Hao, 2023. "The forecast ability of a belief-based momentum indicator in full-day, daytime, and nighttime volatilities of Chinese oil futures," Energy Economics, Elsevier, vol. 127(PB).
    28. Maki, Daiki & Ota, Yasushi, 2021. "Impacts of asymmetry on forecasting realized volatility in Japanese stock markets," Economic Modelling, Elsevier, vol. 101(C).
    29. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    30. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    31. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    32. Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
    33. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    34. Manh Cuong Dong & Cathy W. S. Chen & Manabu Asai, 2023. "Bayesian non‐linear quantile effects on modelling realized kernels," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 981-995, January.
    35. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    36. Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
    37. Xu Gong & Boqiang Lin, 2022. "Predicting the volatility of crude oil futures: The roles of leverage effects and structural changes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 610-640, January.
    38. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    39. Abootaleb Shirvani & Stefan Mittnik & W. Brent Lindquist & Svetlozar T. Rachev, 2021. "Bitcoin Volatility and Intrinsic Time Using Double Subordinated Levy Processes," Papers 2109.15051, arXiv.org, revised Aug 2023.
    40. Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
    41. Daiki Maki & Yasushi Ota, 2020. "The impacts of asymmetry on modeling and forecasting realized volatility in Japanese stock markets," Papers 2006.00158, arXiv.org.
    42. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    43. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    44. Maki, Daiki, 2024. "Asymmetric effect of trading volume on realized volatility," International Review of Economics & Finance, Elsevier, vol. 94(C).

  21. Manuabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Modelling and Forecasting Noisy Realized Volatility," Working Papers in Economics 10/21, University of Canterbury, Department of Economics and Finance.

    Cited by:

    1. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
    2. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Geert Mesters & Siem Jan Koopman & Marius Ooms, 2011. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Tinbergen Institute Discussion Papers 11-090/4, Tinbergen Institute.
    4. Dimitrios I. Vortelinos, 2015. "Out‐of‐sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini‐futures markets," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 58-67, November.
    5. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    6. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
    7. Lee, Oesook, 2014. "The functional central limit theorem and structural change test for the HAR(∞) model," Economics Letters, Elsevier, vol. 124(3), pages 370-373.
    8. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    9. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    10. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    11. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    12. Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.
    13. Claudiu Vinte & Marcel Ausloos & Titus Felix Furtuna, 2022. "A Volatility Estimator of Stock Market Indices Based on the Intrinsic Entropy Model," Papers 2205.01370, arXiv.org.
    14. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
    15. Hwang, Eunju & Shin, Dong Wan, 2013. "A CUSUM test for a long memory heterogeneous autoregressive model," Economics Letters, Elsevier, vol. 121(3), pages 379-383.
    16. Maki, Daiki & Ota, Yasushi, 2021. "Impacts of asymmetry on forecasting realized volatility in Japanese stock markets," Economic Modelling, Elsevier, vol. 101(C).
    17. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    18. Hwang, Eunju & Shin, Dong Wan, 2015. "A CUSUMSQ test for structural breaks in error variance for a long memory heterogeneous autoregressive model," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 167-176.
    19. Daiki Maki & Yasushi Ota, 2020. "The impacts of asymmetry on modeling and forecasting realized volatility in Japanese stock markets," Papers 2006.00158, arXiv.org.
    20. Vortelinos, Dimitrios I., 2015. "Out-of-sample evaluation of macro announcements, linearity, long memory, heterogeneity and jumps in mini-futures markets," Review of Financial Economics, Elsevier, vol. 27(C), pages 58-67.
    21. Lin, Boqiang & Wu, Nan, 2022. "Do heterogeneous oil price shocks really have different effects on earnings management?," International Review of Financial Analysis, Elsevier, vol. 79(C).

  22. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.

    Cited by:

    1. Isabel Casas & Helena Veiga, 2021. "Exploring Option Pricing and Hedging via Volatility Asymmetry," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
    2. Manabu Asai & Michael McAleer, 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Tinbergen Institute Discussion Papers 16-065/III, Tinbergen Institute.
    3. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    4. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
    5. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Zea Bermudez, Patrícia de, 2019. "Data cloning estimation for asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 28214, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Afonso, António & Gomes, Pedro & Taamouti, Abderrahim, 2014. "Sovereign credit ratings, market volatility, and financial gains," Working Paper Series 1654, European Central Bank.
    9. Chiu, Hsin-Yu & Chen, Ting-Fu, 2020. "Impact of volatility jumps in a mean-reverting model: Derivative pricing and empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    10. Bales, Kyle & Malikane, Christopher, 2020. "The effect of credit ratings on emerging market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    11. McAleer, M.J., 2008. "The ten commandments for optimizing value-at-risk and daily capital charges," Econometric Institute Research Papers EI 2008-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Yanhui Xi & Hui Peng & Yemei Qin, 2016. "Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-15, February.
    15. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    16. Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.
    17. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    18. Athanasios Tsagkanos & Konstantinos Gkillas & Christoforos Konstantatos & Christos Floros, 2021. "Does Trading Volume Drive Systemic Banks’ Stock Return Volatility? Lessons from the Greek Banking System," IJFS, MDPI, vol. 9(2), pages 1-13, April.
    19. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    20. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
    21. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    22. Moawia Alghalith & Christos Floros & Konstantinos Gkillas, 2020. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility," Risks, MDPI, vol. 8(2), pages 1-15, April.
    23. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    24. Carles Bret'o, 2013. "On idiosyncratic stochasticity of financial leverage effects," Papers 1312.5496, arXiv.org.
    25. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    26. Omar Abbara & Mauricio Zevallos, 2022. "Maximum Likelihood Inference for Asymmetric Stochastic Volatility Models," Econometrics, MDPI, vol. 11(1), pages 1-18, December.
    27. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    28. Mao, Xiuping & Ruiz, Esther & Veiga, Helena, 2017. "Threshold stochastic volatility: Properties and forecasting," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1105-1123.
    29. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.

  23. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Cited by:

    1. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.

  24. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.

    Cited by:

    1. Sujay Mukhoti & Pritam Ranjan, 2019. "A new class of discrete-time stochastic volatility model with correlated errors," Applied Economics, Taylor & Francis Journals, vol. 51(3), pages 259-277, January.
    2. Manabu Asai & Michael McAleer, 2011. "Dynamic Conditional Correlations for Asymmetric Processes," Documentos de Trabajo del ICAE 2011-30, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
    4. Márcio Laurini, 2012. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," IBMEC RJ Economics Discussion Papers 2012-02, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    5. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
    6. Isabel Casas & Helena Veiga, 2021. "Exploring Option Pricing and Hedging via Volatility Asymmetry," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
    7. Manabu Asai & Michael McAleer, 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Tinbergen Institute Discussion Papers 16-065/III, Tinbergen Institute.
    8. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    9. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    10. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
    11. David E. Allen & Michael McAleer, 2020. "Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE," Risks, MDPI, vol. 8(1), pages 1-20, February.
    12. Michael McAleer & Marcelo Cunha Medeiros, 2010. "Forecasting Realized Volatility with Linear and Nonlinear Models," Textos para discussão 568, Department of Economics PUC-Rio (Brazil).
    13. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    14. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    15. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CARF F-Series CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    16. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    17. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2009. "Block Structure Multivariate Stochastic Volatility Models," CIRJE F-Series CIRJE-F-699, CIRJE, Faculty of Economics, University of Tokyo.
    18. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Geert Mesters & Siem Jan Koopman & Marius Ooms, 2011. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Tinbergen Institute Discussion Papers 11-090/4, Tinbergen Institute.
    21. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    22. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    23. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    24. Pop, Raluca Elena, 2012. "Herd behavior towards the market index: evidence from Romanian stock exchange," MPRA Paper 51595, University Library of Munich, Germany.
    25. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    26. G.K., Chetan Kumar & K.B., Rangappa & S., Suchitra, 2022. "Normative analysis of the impact of Covid-19 on prominent sectors of Indian economy by using ARCH Model," MPRA Paper 114027, University Library of Munich, Germany.
    27. Asai, Manabu & McAleer, Michael & de Veiga, Bernardo, 2008. "Portfolio single index (PSI) multivariate conditional and stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 209-214.
    28. Benjamin Poignard & Manabu Asaiz, 2020. "A Penalised OLS Framework for High-Dimensional Multivariate Stochastic Volatility Models," Discussion Papers in Economics and Business 20-02, Osaka University, Graduate School of Economics.
    29. Laurini, Márcio Poletti & Mauad, Roberto Baltieri, 2015. "A common jump factor stochastic volatility model," Finance Research Letters, Elsevier, vol. 12(C), pages 2-10.
    30. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    31. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
    32. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    33. Michael McAleer & Bernardo da Veiga, 2008. "Single-index and portfolio models for forecasting value-at-risk thresholds," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 217-235.
    34. Bonato, Mateo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Risk Spillovers in International Equity Portfolios," Working Papers on Finance 1214, University of St. Gallen, School of Finance.
    35. Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
    36. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
    37. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility using state space models," Papers 0802.0223, arXiv.org.
    38. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
    39. Adriano Zanin Zambom & Seonjin Kim & Nancy Lopes Garcia, 2022. "Variable length Markov chain with exogenous covariates," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 312-328, March.
    40. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
    41. Anders Johansson, 2009. "Stochastic volatility and time-varying country risk in emerging markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 337-363.
    42. K. Triantafyllopoulos, 2012. "Multi‐variate stochastic volatility modelling using Wishart autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 48-60, January.
    43. Hwai-Chung Ho, 2022. "Forecasting the distribution of long-horizon returns with time-varying volatility," Papers 2201.07457, arXiv.org.
    44. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    45. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    46. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    47. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    48. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    49. C. Gourieroux, 2006. "Continuous Time Wishart Process for Stochastic Risk," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 177-217.
    50. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    51. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    52. David Edmund Allen, 2020. "Stochastic Volatility and GARCH: Do Squared End-of-Day Returns Provide Similar Information?," JRFM, MDPI, vol. 13(9), pages 1-25, September.
    53. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    54. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    55. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    56. Jarjour, Riad & Chan, Kung-Sik, 2020. "Dynamic conditional angular correlation," Journal of Econometrics, Elsevier, vol. 216(1), pages 137-150.
    57. McAleer, M.J., 2008. "The ten commandments for optimizing value-at-risk and daily capital charges," Econometric Institute Research Papers EI 2008-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    58. Cees Diks & Valentyn Panchenko & Oleg Sokolinskiy, & Dick van Dijk, 2013. "Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support," Tinbergen Institute Discussion Papers 13-061/III, Tinbergen Institute.
    59. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    60. Alin Sima, 2008. "Stylized Facts and Discrete Stochastic Volatility Models," Advances in Economic and Financial Research - DOFIN Working Paper Series 10, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    61. Chen, J. & Kobayashi, M. & McAleer, M.J., 2017. "Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models," Econometric Institute Research Papers TI 2017-022/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    62. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    63. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    64. Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
    65. Mumtaz, Haroon & Theodoridis, Konstantinos, 2012. "The international transmission of volatility shocks: an empirical analysis," Bank of England working papers 463, Bank of England.
    66. Weber, Enzo, 2013. "Simultaneous stochastic volatility transmission across American equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(1), pages 53-60.
    67. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
    68. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    69. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    70. Kobayashi, Masahito, 2009. "Testing for jumps in the stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2597-2608.
    71. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    72. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    73. Armine Bagyan & Donald Richards, 2023. "Hoffmann-Jørgensen Inequalities for Random Walks on the Cone of Positive Definite Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1181-1202, June.
    74. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    75. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    76. Massimiliano Caporin & Michael McAleer, 2009. "A Scientific Classification of Volatility Models," Documentos de Trabajo del ICAE 2009-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    77. Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
    78. Krause, Timothy A., 2019. "Hedge fund returns and uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 597-601.
    79. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    80. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    81. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    82. Boswijk, H Peter & Cavaliere, Giuseppe & De Angelis, Luca & Taylor, AM Robert, 2022. "Adaptive information-based methods for determining the co-integration rank in heteroskedastic VAR models," Essex Finance Centre Working Papers 33707, University of Essex, Essex Business School.
    83. Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    84. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    85. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    86. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    87. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    88. Ding, Liang & Vo, Minh, 2012. "Exchange rates and oil prices: A multivariate stochastic volatility analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 15-37.
    89. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    90. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    91. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    92. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    93. Olson, Eric & J. Vivian, Andrew & Wohar, Mark E., 2014. "The relationship between energy and equity markets: Evidence from volatility impulse response functions," Energy Economics, Elsevier, vol. 43(C), pages 297-305.
    94. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    95. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    96. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    97. Esfandiar Maasoumi & Michael McAleer, 2008. "Realized Volatility and Long Memory: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 1-9.
    98. Jiří Witzany, 2011. "Estimating Correlated Jumps and Stochastic Volatilities," Working Papers IES 2011/35, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2011.
    99. Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
    100. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    101. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2016. "Testing for a Common Volatility Process and Information Spillovers in Bivariate Financial Time Series Models," Documentos de Trabajo del ICAE 2016-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    102. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Working Papers ECARES ECARES 2015-34, ULB -- Universite Libre de Bruxelles.
    103. Mumtaz, Haroon, 2011. "Estimating the impact of the volatility of shocks: a structural VAR approach," Bank of England working papers 437, Bank of England.
    104. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    105. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    106. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    107. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    108. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    109. Juan-Angel Jimenez-Martin & Michael McAleer & Teodosio Pérez-Amaral, 2009. "The Ten Commandments for Managing Value-at-Risk Under the Basel II Accord," Documentos de Trabajo del ICAE 2009-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    110. Hiroaki Hata & Jun Sekine, 2017. "Risk-Sensitive Asset Management in a Wishart-Autoregressive Factor Model with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 221-252, September.
    111. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    112. Mengheng Li & Marcel Scharth, 2022. "Leverage, Asymmetry, and Heavy Tails in the High-Dimensional Factor Stochastic Volatility Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 285-301, January.
    113. Huang, Shian-Chang, 2011. "Wavelet-based multi-resolution GARCH model for financial spillover effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2529-2539.
    114. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    115. Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    116. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    117. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    118. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    119. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    120. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    121. Hartwig, Benny, 2020. "Robust Inference in Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224528, Verein für Socialpolitik / German Economic Association.
    122. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    123. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    124. Huang Xiao, 2013. "Quasi-maximum likelihood estimation of multivariate diffusions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 179-197, April.
    125. G.K. Chetan Kumar & K.B. Rangappa & S. Suchitra, 2022. "Normative analysis of the impact of Covid-19 on prominent sectors of Indian economy by using ARCH Model," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(631), S), pages 151-164, Summer.
    126. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    127. Chen Gong & David S. Stoffer, 2021. "A Note on Efficient Fitting of Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 186-200, March.
    128. Athanasios Tsagkanos & Konstantinos Gkillas & Christoforos Konstantatos & Christos Floros, 2021. "Does Trading Volume Drive Systemic Banks’ Stock Return Volatility? Lessons from the Greek Banking System," IJFS, MDPI, vol. 9(2), pages 1-13, April.
    129. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    130. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    131. Gao, Jiti & McAleer, Michael & Allen, David E., 2008. "Econometric modelling in finance and risk management: An overview," Journal of Econometrics, Elsevier, vol. 147(1), pages 1-4, November.
    132. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    133. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
    134. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    135. Geert Mesters & Bernd Schwaab & Siem Jan Koopman, 2014. "A Dynamic Yield Curve Model with Stochastic Volatility and Non-Gaussian Interactions: An Empirical Study of Non-standard Monetary Policy in the Euro Area," Tinbergen Institute Discussion Papers 14-071/III, Tinbergen Institute.
    136. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    137. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    138. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    139. Ming Lin & Changjiang Liu & Linlin Niu, 2013. "Bayesian Estimation of Wishart Autoregressive Stochastic Volatility Model," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    140. Michael Weylandt & Yu Han & Katherine B. Ensor, 2019. "Multivariate Modeling of Natural Gas Spot Trading Hubs Incorporating Futures Market Realized Volatility," Papers 1907.10152, arXiv.org.
    141. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    142. Matteo Barigozzi & Marc Hallin, 2018. "Generalized Dynamic Factor Models and Volatilities: Consistency, rates, and prediction intervals," Papers 1811.10045, arXiv.org, revised Jul 2019.
    143. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    144. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," EconomiX Working Papers 2018-14, University of Paris Nanterre, EconomiX.
    145. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    146. Hoti, Suhejla, 2005. "Modelling country spillover effects in country risk ratings," Emerging Markets Review, Elsevier, vol. 6(4), pages 324-345, December.
    147. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
    148. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    149. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    150. Moawia Alghalith & Christos Floros & Konstantinos Gkillas, 2020. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility," Risks, MDPI, vol. 8(2), pages 1-15, April.
    151. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
    152. Martina Danielova Zaharieva & Mark Trede & Bernd Wilfling, 2017. "Bayesian semiparametric multivariate stochastic volatility with an application to international stock-market co-movements," CQE Working Papers 6217, Center for Quantitative Economics (CQE), University of Muenster.
    153. Benjamin Poignard & Jean-Davis Fermanian, 2014. "Dynamic Asset Correlations Based on Vines," Working Papers 2014-46, Center for Research in Economics and Statistics.
    154. Karapanagiotidis, Paul, 2012. "Improving Bayesian VAR density forecasts through autoregressive Wishart Stochastic Volatility," MPRA Paper 38885, University Library of Munich, Germany.
    155. Ming Ma & Jing Zhang, 2023. "RETRACTED ARTICLE: A Bayesian analysis based on multivariate stochastic volatility model: evidence from green stocks," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-14, January.
    156. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    157. Elena Hadjicosta & Donald Richards, 2020. "Integral transform methods in goodness-of-fit testing, II: the Wishart distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1317-1370, December.
    158. Lakshina, Valeriya, 2014. "Is it possible to break the «curse of dimensionality»? Spatial specifications of multivariate volatility models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 36(4), pages 61-78.
    159. Jean-David Fermanian, 2017. "Recent Developments in Copula Models," Econometrics, MDPI, vol. 5(3), pages 1-3, July.
    160. Roberto Casarin & Domenico sartore, 2008. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 0816, University of Brescia, Department of Economics.
    161. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    162. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    163. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    164. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
    165. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    166. Christian N. Brinch, 2008. "Simulated Maximum Likelihood using Tilted Importance Sampling," Discussion Papers 540, Statistics Norway, Research Department.
    167. Stanislav S Borysov & Alexander V Balatsky, 2014. "Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    168. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.
    169. Yingying Xu & Donald Lien, 2020. "Optimal futures hedging for energy commodities: An application of the GAS model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1090-1108, July.
    170. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    171. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    172. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    173. Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
    174. Manner, Hans & Reznikova, Olga, 2010. "Forecasting international stock market correlations: does anything beat a CCC?," Discussion Papers in Econometrics and Statistics 7/10, University of Cologne, Institute of Econometrics and Statistics.
    175. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
    176. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.

  25. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.

    Cited by:

    1. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
    2. Isabel Casas & Helena Veiga, 2021. "Exploring Option Pricing and Hedging via Volatility Asymmetry," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
    3. Manabu Asai & Michael McAleer, 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Tinbergen Institute Discussion Papers 16-065/III, Tinbergen Institute.
    4. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    5. Michael McAleer & Marcelo Cunha Medeiros, 2010. "Forecasting Realized Volatility with Linear and Nonlinear Models," Textos para discussão 568, Department of Economics PUC-Rio (Brazil).
    6. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2009. "Block Structure Multivariate Stochastic Volatility Models," CIRJE F-Series CIRJE-F-699, CIRJE, Faculty of Economics, University of Tokyo.
    7. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    9. Asai, Manabu & McAleer, Michael & de Veiga, Bernardo, 2008. "Portfolio single index (PSI) multivariate conditional and stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 209-214.
    10. Rangel José Gonzalo & Engle Robert F., 2009. "The Factor-Spline-GARCH Model for High and Low Frequency Correlations," Working Papers 2009-03, Banco de México.
    11. Michael McAleer & Bernardo da Veiga, 2008. "Single-index and portfolio models for forecasting value-at-risk thresholds," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 217-235.
    12. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
    13. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
    14. Adriano Zanin Zambom & Seonjin Kim & Nancy Lopes Garcia, 2022. "Variable length Markov chain with exogenous covariates," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 312-328, March.
    15. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    16. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    17. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
    18. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    19. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    20. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    21. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    22. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    23. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    24. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    25. Xi Liu & Yiqiao Jin & Yifan Yang & Xiaoqing Pan, 2023. "Properties and Estimations of a Multivariate Folded Normal Distribution," Mathematics, MDPI, vol. 11(23), pages 1-15, December.
    26. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    27. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    28. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    29. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    30. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    31. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    32. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    33. Borus Jungbacker & Siem Jan Koopman, 2006. "Monte Carlo Likelihood Estimation for Three Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 385-408.
    34. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    35. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    36. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    37. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    38. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    39. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    40. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    41. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.

Articles

  1. Benjamin Poignard & Manabu Asai, 2023. "Estimation of high-dimensional vector autoregression via sparse precision matrix," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
    See citations under working paper version above.
  2. Asai, Manabu, 2023. "Feasible Panel GARCH Models: Variance-Targeting Estimation and Empirical Application," Econometrics and Statistics, Elsevier, vol. 25(C), pages 23-38.

    Cited by:

    1. Mamman, Suleiman O. & Wang, Zhanqin & Iliyasu, Jamilu, 2023. "Commonality in BRICS stock markets’ reaction to global economic policy uncertainty: Evidence from a panel GARCH model with cross sectional dependence," Finance Research Letters, Elsevier, vol. 55(PA).

  3. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    See citations under working paper version above.
  4. Asai Manabu & McAleer Michael, 2022. "Multivariate Hyper-Rotated GARCH-BEKK," Journal of Time Series Econometrics, De Gruyter, vol. 14(2), pages 175-198, July.

    Cited by:

    1. Tanin, Tauhidul Islam & Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf Mohsen & Brooks, Robert, 2022. "Risk transmission from the oil market to Islamic and conventional banks in oil-exporting and oil-importing countries," Energy Economics, Elsevier, vol. 115(C).

  5. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.

    Cited by:

    1. Asai Manabu & So Mike K. P., 2023. "Realized BEKK-CAW Models," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 49-77, January.
    2. Andrea Bucci & Michele Palma & Chao Zhang, 2024. "Geometric Deep Learning for Realized Covariance Matrix Forecasting," Papers 2412.09517, arXiv.org.
    3. Bosupeng, Mpho & Naranpanawa, Athula & Su, Jen-Je, 2024. "Does exchange rate volatility affect the impact of appreciation and depreciation on the trade balance? A nonlinear bivariate approach," Economic Modelling, Elsevier, vol. 130(C).

  6. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.

    Cited by:

    1. Asai Manabu & So Mike K. P., 2023. "Realized BEKK-CAW Models," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 49-77, January.

  7. Cathy W. S. Chen & Hong Than-Thi & Manabu Asai, 2021. "On a Bivariate Hysteretic AR-GARCH Model with Conditional Asymmetry in Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 413-433, August.

    Cited by:

    1. Linyu Cao & Ruili Sun & Tiefeng Ma & Conan Liu, 2023. "On Asymmetric Correlations and Their Applications in Financial Markets," JRFM, MDPI, vol. 16(3), pages 1-18, March.

  8. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.
    See citations under working paper version above.
  9. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    See citations under working paper version above.
  10. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    See citations under working paper version above.
  11. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    See citations under working paper version above.
  12. Mike K. P. So & Raymond W. M. Li & Manabu Asai & Yue Jiang, 2017. "Stochastic Multivariate Mixture Covariance Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 139-155, March.

    Cited by:

    1. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.

  13. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    See citations under working paper version above.
  14. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    See citations under working paper version above.
  15. Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
    See citations under working paper version above.
  16. Shelton Peiris & Manabu Asai & Michael McAleer, 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," JRFM, MDPI, vol. 10(4), pages 1-16, December.
    See citations under working paper version above.
  17. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    See citations under working paper version above.
  18. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    See citations under working paper version above.
  19. M. Shelton Peiris & Manabu Asai, 2016. "Generalized Fractional Processes with Long Memory and Time Dependent Volatility Revisited," Econometrics, MDPI, vol. 4(3), pages 1-21, September.

    Cited by:

    1. Shelton Peiris & Manabu Asai & Michael McAleer, 2016. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," Tinbergen Institute Discussion Papers 16-044/III, Tinbergen Institute.
    2. Paul M. Beaumont & Aaron D. Smallwood, 2024. "Conditional sum of squares estimation of k-factor GARMA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 501-543, September.
    3. Manabu Asai & Shelton Peiris & Michael McAleer & David E. Allen, 2018. "Cointegrated Dynamics for A Generalized Long Memory Process: An Application to Interest Rates," Documentos de Trabajo del ICAE 2018-22, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    4. Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Lahmiri, Salim & Bekiros, Stelios, 2020. "Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Beaumont, Paul & Smallwood, Aaron, 2019. "Inference for likelihood-based estimators of generalized long-memory processes," MPRA Paper 96313, University Library of Munich, Germany.
    7. Asai, M. & Peiris, S. & McAleer, M.J. & Allen, D.E., 2018. "Cointegrated Dynamics for A Generalized Long Memory Process," Econometric Institute Research Papers EI 2018-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.
    9. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.

  20. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    See citations under working paper version above.
  21. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    See citations under working paper version above.
  22. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    See citations under working paper version above.
  23. Asai Manabu & So Mike K.P., 2015. "Long Memory and Asymmetry for Matrix-Exponential Dynamic Correlation Processes," Journal of Time Series Econometrics, De Gruyter, vol. 7(1), pages 69-94, January.

    Cited by:

    1. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    2. Ilya Archakov & Peter Reinhard Hansen, 2020. "A New Parametrization of Correlation Matrices," Papers 2012.02395, arXiv.org.
    3. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.
    4. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    5. Aida Karmous & Heni Boubaker & Lotfi Belkacem, 2021. "Forecasting Volatility for an Optimal Portfolio with Stylized Facts Using Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 461-482, August.
    6. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

  24. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.

    Cited by:

    1. Shawkat Hammoudeh & Michael McAleer, 2012. "Risk Management and Financial Derivatives: An Overview," Working Papers in Economics 12/10, University of Canterbury, Department of Economics and Finance.
    2. Gao, Bin & Xie, Jun & Jia, Yun, 2019. "A futures pricing model with long-term and short-term traders," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 9-28.
    3. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    4. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Su, Jung-Bin, 2014. "Empirical analysis of long memory, leverage, and distribution effects for stock market risk estimates," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 1-39.
    6. Liu, Yanxin & Li, Johnny Siu-Hang & Ng, Andrew Cheuk-Yin, 2015. "Option pricing under GARCH models with Hansen's skewed-t distributed innovations," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 108-125.
    7. Yang, Chunpeng & Gao, Bin, 2014. "The term structure of sentiment effect in stock index futures market," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 171-182.
    8. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    9. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    10. Newaz, Mohammad Khaleq & Park, Jin Suk, 2019. "The impact of trade intensity and Market characteristics on asymmetric volatility, spillovers and asymmetric spillovers: Evidence from the response of international stock markets to US shocks," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 79-94.
    11. Wang, Yuming & Ma, Jinpeng, 2014. "Excess volatility and the cross-section of stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 1-16.
    12. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

  25. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.

    Cited by:

    1. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    2. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    3. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Dark, Jonathan, 2024. "An adaptive long memory conditional correlation model," Journal of Empirical Finance, Elsevier, vol. 75(C).
    5. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    6. Piotr Fiszeder, 2018. "Low and high prices can improve covariance forecasts: The evidence based on currency rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 641-649, September.
    7. Fałdziński, Marcin & Fiszeder, Piotr & Molnár, Peter, 2024. "Improving volatility forecasts: Evidence from range-based models," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    8. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    9. Neenu C & T Mohamed Nishad, 2022. "Asymmetric Volatility and Leverage Effect in Stock Market: A Bibliometric Review," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 14(1), pages 21-34, June.
    10. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
    11. Kundu, Srikanta & Sarkar, Nityananda, 2016. "Return and volatility interdependences in up and down markets across developed and emerging countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 297-311.

  26. So, Mike K.P. & Wong, Jerry & Asai, Manabu, 2013. "Stress testing correlation matrices for risk management," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 310-322.

    Cited by:

    1. Chang, C-L. & Allen, D.E. & McAleer, M.J., 2013. "Recent Developments in Financial Economics and Econometrics: An Overview," Econometric Institute Research Papers EI 2013-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Paraschiv, Florentina & Mudry, Pierre-Antoine & Andries, Alin Marius, 2015. "Stress-testing for portfolios of commodity futures," Economic Modelling, Elsevier, vol. 50(C), pages 9-18.
    3. Busch, Ramona & Koziol, Philipp & Mitrovic, Marc, 2015. "Many a little makes a mickle: Macro portfolio stress test for small and medium-sized German banks," Discussion Papers 23/2015, Deutsche Bundesbank.
    4. Chungen Shen & Yunlong Wang & Wenjuan Xue & Lei-Hong Zhang, 2021. "An accelerated active-set algorithm for a quadratic semidefinite program with general constraints," Computational Optimization and Applications, Springer, vol. 78(1), pages 1-42, January.
    5. Abildgren, Kim, 2014. "Far out in the tails – The historical distributions of macro-financial risk factors in Denmark," Nationaløkonomisk tidsskrift, Nationaløkonomisk Forening, vol. 2014(1), pages 1-31.
    6. Chakraborty, Sandip & Kakani, Ram Kumar & Sampath, Aravind, 2022. "Portfolio risk and stress across the business cycle," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    7. Yu, Philip L.H. & Li, W.K. & Ng, F.C., 2014. "Formulating hypothetical scenarios in correlation stress testing via a Bayesian framework," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 17-33.
    8. Busch, Ramona & Koziol, Philipp & Mitrovic, Marc, 2018. "Many a little makes a mickle: Stress testing small and medium-sized German banks," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 237-253.

  27. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
    See citations under working paper version above.
  28. Manabu Asai & Iván Brugal, 2012. "Forecasting volatility using range data: analysis for emerging equity markets in Latin America," Applied Financial Economics, Taylor & Francis Journals, vol. 22(6), pages 461-470, March.

    Cited by:

    1. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    2. Tomasz Skoczylas, 2013. "Modelowanie i prognozowanie zmienności przy użyciu modeli opartych o zakres wahań," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 35.

  29. Asai, Manabu & McAleer, Michael & Medeiros, Marcelo C., 2012. "Modelling and forecasting noisy realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 217-230, January.
    See citations under working paper version above.
  30. Manabu Asai & Michael McAleer, 2011. "Alternative Asymmetric Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
    See citations under working paper version above.
  31. Manabu Asai & Angelo Unite, 2010. "General asymmetric stochastic volatility models using range data: estimation and empirical evidence from emerging equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 20(13), pages 1041-1049.

    Cited by:

    1. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
    2. Neda Todorova, 2012. "Volatility estimators based on daily price ranges versus the realized range," Applied Financial Economics, Taylor & Francis Journals, vol. 22(3), pages 215-229, February.
    3. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.

  32. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.

    Cited by:

    1. Manabu Asai & Michael McAleer, 2011. "Dynamic Conditional Correlations for Asymmetric Processes," Documentos de Trabajo del ICAE 2011-30, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
    3. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    4. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CARF F-Series CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2009. "Block Structure Multivariate Stochastic Volatility Models," CIRJE F-Series CIRJE-F-699, CIRJE, Faculty of Economics, University of Tokyo.
    6. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    7. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    8. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    9. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    10. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
    11. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    12. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    13. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
    15. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    16. McAleer, M.J., 2008. "The ten commandments for optimizing value-at-risk and daily capital charges," Econometric Institute Research Papers EI 2008-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Mihnea S. Andrei & Sujit K. Ghosh & Jian Zou, 2021. "Dynamic Correlation Multivariate Stochastic Volatility Black-Litterman With Latent Factors," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 1-1, March.
    18. Hafner, Christian & Manner H., 2012. "Dynamic stochastic copula models: Estimation, inference and applications," LIDAM Reprints ISBA 2012022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    20. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    21. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," Working Papers hal-04141780, HAL.
    22. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    23. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Volatility Spillovers Between Crude Oil Futures Returns and Oil Company Stocks Return," CARF F-Series CARF-F-157, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    24. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    25. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    26. Jonas E. Arias & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Macroeconomic Forecasting and Variable Ordering in Multivariate Stochastic Volatility Models," Working Papers 21-21, Federal Reserve Bank of Philadelphia.
    27. Staer, Arsenio & Sottile, Pedro, 2018. "Equivalent volume and comovement," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 143-157.
    28. BenMim, Imen & BenSaïda, Ahmed, 2019. "Financial contagion across major stock markets: A study during crisis episodes," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 187-201.
    29. Ahmed BenSaïda & Houda Litimi, 2021. "Financial contagion across G10 stock markets: A study during major crises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4798-4821, July.
    30. Manabu Asai, 2023. "Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter," Econometrics, MDPI, vol. 11(3), pages 1-14, July.
    31. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    32. So, Mike K.P. & Yeung, Cherry Y.T., 2014. "Vine-copula GARCH model with dynamic conditional dependence," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 655-671.
    33. Rajibur Reza & Gurudeo Anand Tularam & Xiyang Li & Bin Li, 2022. "Investments in the Asian water sector: an analysis based on the DCC-GARCH model," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    34. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    35. Akhtaruzzaman, Md & Shamsuddin, Abul & Easton, Steve, 2014. "Dynamic correlation analysis of spill-over effects of interest rate risk and return on Australian and US financial firms," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 378-396.
    36. Hartwig, Benny, 2020. "Robust Inference in Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224528, Verein für Socialpolitik / German Economic Association.
    37. Xiao, Yuewen & Ku, Yu-Cheng & Bloomfield, Peter & Ghosh, Sujit K., 2015. "On the degrees of freedom in MCMC-based Wishart models for time series data," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 59-64.
    38. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    39. Fahim Afzal & Pan Haiying & Farman Afzal & Asif Mahmood & Amir Ikram, 2021. "Value-at-Risk Analysis for Measuring Stochastic Volatility of Stock Returns: Using GARCH-Based Dynamic Conditional Correlation Model," SAGE Open, , vol. 11(1), pages 21582440211, March.
    40. Ming Lin & Changjiang Liu & Linlin Niu, 2013. "Bayesian Estimation of Wishart Autoregressive Stochastic Volatility Model," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    41. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    42. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," EconomiX Working Papers 2018-14, University of Paris Nanterre, EconomiX.
    43. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    44. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    45. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    46. Nam, Kyungsik, 2021. "Investigating the effect of climate uncertainty on global commodity markets," Energy Economics, Elsevier, vol. 96(C).
    47. Roberto Casarin & Domenico sartore, 2008. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 0816, University of Brescia, Department of Economics.
    48. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    49. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.

  33. Manabu Asai & Michael McAleer, 2009. "Multivariate stochastic volatility, leverage and news impact surfaces," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 292-309, July.

    Cited by:

    1. Sujay Mukhoti & Pritam Ranjan, 2019. "A new class of discrete-time stochastic volatility model with correlated errors," Applied Economics, Taylor & Francis Journals, vol. 51(3), pages 259-277, January.
    2. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
    3. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
    4. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2013. "News impact curve for stochastic volatility models," Economics Letters, Elsevier, vol. 120(1), pages 130-134.
    6. Haroon Mumtaz & Francesco Zanetti, 2013. "The Impact of the Volatility of Monetary Policy Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(4), pages 535-558, June.
    7. Benjamin Poignard & Manabu Asaiz, 2020. "A Penalised OLS Framework for High-Dimensional Multivariate Stochastic Volatility Models," Discussion Papers in Economics and Business 20-02, Osaka University, Graduate School of Economics.
    8. Guilherme Valle Moura & João Frois Caldeira & André Santos, 2014. "Seleção De Carteiras Utilizando O Modelofama-French-Carhart," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 117, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    9. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    10. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    11. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    12. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
    14. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    15. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    16. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    17. Mumtaz, Haroon & Theodoridis, Konstantinos, 2012. "The international transmission of volatility shocks: an empirical analysis," Bank of England working papers 463, Bank of England.
    18. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," Working Papers hal-04141780, HAL.
    20. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    21. Jonas E. Arias & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Macroeconomic Forecasting and Variable Ordering in Multivariate Stochastic Volatility Models," Working Papers 21-21, Federal Reserve Bank of Philadelphia.
    22. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    23. Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
    24. Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
    25. Mumtaz, Haroon, 2011. "Estimating the impact of the volatility of shocks: a structural VAR approach," Bank of England working papers 437, Bank of England.
    26. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    27. Diks, Cees & Panchenko, Valentyn & Sokolinskiy, Oleg & van Dijk, Dick, 2014. "Comparing the accuracy of multivariate density forecasts in selected regions of the copula support," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 79-94.
    28. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    29. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    30. Geert Mesters & Bernd Schwaab & Siem Jan Koopman, 2014. "A Dynamic Yield Curve Model with Stochastic Volatility and Non-Gaussian Interactions: An Empirical Study of Non-standard Monetary Policy in the Euro Area," Tinbergen Institute Discussion Papers 14-071/III, Tinbergen Institute.
    31. Haroon Mumtaz & Paolo Surico, 2013. "Policy Uncertainty and Aggregate Fluctuations," Working Papers 708, Queen Mary University of London, School of Economics and Finance.
    32. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    33. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    34. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," EconomiX Working Papers 2018-14, University of Paris Nanterre, EconomiX.
    35. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    36. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    37. Haroon Mumtaz, 2016. "The Evolving Transmission of Uncertainty Shocks in the United Kingdom," Econometrics, MDPI, vol. 4(1), pages 1-18, March.
    38. Awijen, Haithem & Ben Zaied, Younes & Nguyen, Duc Khuong & Sensoy, Ahmet, 2020. "Endogenous Financial Uncertainty and Macroeconomic Volatility: Evidence from the United States," MPRA Paper 101276, University Library of Munich, Germany, revised Jun 2020.
    39. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    40. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    41. Sujay K Mukhoti, "undated". "Dynamic Feedback Effect And Skewness In Non-Stationary Stochastic Volatility Model With Leverage," Working papers 145, Indian Institute of Management Kozhikode.
    42. Fu, Hsuan & Luger, Richard, 2022. "Multiple testing of the forward rate unbiasedness hypothesis across currencies," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 232-245.

  34. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.

    Cited by:

    1. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    2. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    5. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
    6. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    7. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    8. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    9. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    10. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.

  35. Manabu Asai & Angelo Unite, 2008. "The relationship between stock return volatility and trading volume: the case of the Philippines," Applied Financial Economics, Taylor & Francis Journals, vol. 18(16), pages 1333-1341.

    Cited by:

    1. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    2. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    3. Tosin B. Fateye & Oluwaseun D. Ajay & Cyril A. Ajay, 2021. "Modelling of Daily Price Volatility of South Africa Property Stock Market Using GARCH Analysis," AfRES 2021-013, African Real Estate Society (AfRES).
    4. Loredana Ureche-Rangau & Fabien Collado & Ulysse Galiay, 2011. "The dynamics of the volatility – trading volume relationship: New evidence from developed and emerging markets," Economics Bulletin, AccessEcon, vol. 31(3), pages 2569-2583.
    5. Jawadi Fredj & Ureche-Rangau Loredana, 2013. "Threshold linkages between volatility and trading volume: evidence from developed and emerging markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 313-333, May.

  36. Asai, Manabu & McAleer, Michael, 2008. "A Portfolio Index GARCH model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 449-461.

    Cited by:

    1. Ruitao Gu & Qiaoyun Zhang & Wei Zhou & Jianxu Liu, 2022. "Judging the True Health of Finance Institutions Based on Risk Behavior and Operation Performance," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-21, November.
    2. McAleer, M.J., 2008. "The ten commandments for optimizing value-at-risk and daily capital charges," Econometric Institute Research Papers EI 2008-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Sun, Xiaolei & Li, Jianping & Tang, Ling & Wu, Dengsheng, 2012. "Identifying the risk-return tradeoff and exploring the dynamic risk exposure of country portfolio of the FSU's oil economies," Economic Modelling, Elsevier, vol. 29(6), pages 2494-2503.
    4. Jochen Krause & Marc S. Paolella, 2014. "A Fast, Accurate Method for Value-at-Risk and Expected Shortfall," Econometrics, MDPI, vol. 2(2), pages 1-25, June.
    5. Alexander, Carol & Lazar, Emese & Stanescu, Silvia, 2013. "Forecasting VaR using analytic higher moments for GARCH processes," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 36-45.
    6. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    7. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.

  37. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.

    Cited by:

    1. Sujay Mukhoti & Pritam Ranjan, 2019. "A new class of discrete-time stochastic volatility model with correlated errors," Applied Economics, Taylor & Francis Journals, vol. 51(3), pages 259-277, January.
    2. Isabel Casas & Helena Veiga, 2021. "Exploring Option Pricing and Hedging via Volatility Asymmetry," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
    3. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    4. Zea Bermudez, Patrícia de, 2019. "Data cloning estimation for asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 28214, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    6. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    7. Chiu, Hsin-Yu & Chen, Ting-Fu, 2020. "Impact of volatility jumps in a mean-reverting model: Derivative pricing and empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    9. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    10. Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Manabu Asai, 2023. "Estimation of Realized Asymmetric Stochastic Volatility Models Using Kalman Filter," Econometrics, MDPI, vol. 11(3), pages 1-14, July.
    12. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    13. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    14. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    15. A. Hachicha & F. Hachicha, 2021. "Analysis of the bitcoin stock market indexes using comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 56(2), pages 647-673, February.
    16. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    17. Ahsan, Md. Nazmul & Dufour, Jean-Marie, 2021. "Simple estimators and inference for higher-order stochastic volatility models," Journal of Econometrics, Elsevier, vol. 224(1), pages 181-197.
    18. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    19. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    20. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.

  38. Manabu Asai & Michael McAleer, 2007. "Non-trading day effects in asymmetric conditional and stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 113-123, March.

    Cited by:

    1. Barrera, Carlos R., 2010. "Redes neuronales para predecir el tipo de cambio diario," Working Papers 2010-001, Banco Central de Reserva del Perú.
    2. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.

  39. Manabu Asai & Michael McAleer, 2006. "Asymmetric Multivariate Stochastic Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 453-473.
    See citations under working paper version above.
  40. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.

    Cited by:

    1. Manabu Asai & Michael McAleer, 2011. "Dynamic Conditional Correlations for Asymmetric Processes," Documentos de Trabajo del ICAE 2011-30, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
    3. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
    4. Manabu Asai & Michael McAleer, 2016. "A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics," Tinbergen Institute Discussion Papers 16-065/III, Tinbergen Institute.
    5. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    6. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," Tinbergen Institute Discussion Papers 13-003/III, Tinbergen Institute.
    7. David E. Allen & Michael McAleer, 2020. "Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE," Risks, MDPI, vol. 8(1), pages 1-20, February.
    8. Michael McAleer & Marcelo Cunha Medeiros, 2010. "Forecasting Realized Volatility with Linear and Nonlinear Models," Textos para discussão 568, Department of Economics PUC-Rio (Brazil).
    9. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    10. León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    11. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    12. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2009. "Block Structure Multivariate Stochastic Volatility Models," CIRJE F-Series CIRJE-F-699, CIRJE, Faculty of Economics, University of Tokyo.
    13. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    14. Asai, M. & Chang, C-L. & McAleer, M.J., 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Econometric Institute Research Papers EI2016-41, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Geert Mesters & Siem Jan Koopman & Marius Ooms, 2011. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Tinbergen Institute Discussion Papers 11-090/4, Tinbergen Institute.
    17. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    18. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    19. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    20. Pop, Raluca Elena, 2012. "Herd behavior towards the market index: evidence from Romanian stock exchange," MPRA Paper 51595, University Library of Munich, Germany.
    21. G.K., Chetan Kumar & K.B., Rangappa & S., Suchitra, 2022. "Normative analysis of the impact of Covid-19 on prominent sectors of Indian economy by using ARCH Model," MPRA Paper 114027, University Library of Munich, Germany.
    22. Asai, Manabu & McAleer, Michael & de Veiga, Bernardo, 2008. "Portfolio single index (PSI) multivariate conditional and stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 209-214.
    23. Laurini, Márcio Poletti & Mauad, Roberto Baltieri, 2015. "A common jump factor stochastic volatility model," Finance Research Letters, Elsevier, vol. 12(C), pages 2-10.
    24. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
    25. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    26. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
    27. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    28. Michael McAleer & Bernardo da Veiga, 2008. "Single-index and portfolio models for forecasting value-at-risk thresholds," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 217-235.
    29. Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
    30. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
    31. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility using state space models," Papers 0802.0223, arXiv.org.
    32. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
    33. Anders Johansson, 2009. "Stochastic volatility and time-varying country risk in emerging markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 337-363.
    34. K. Triantafyllopoulos, 2012. "Multi‐variate stochastic volatility modelling using Wishart autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 48-60, January.
    35. Hwai-Chung Ho, 2022. "Forecasting the distribution of long-horizon returns with time-varying volatility," Papers 2201.07457, arXiv.org.
    36. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    37. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    38. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    39. Sourav Majumdar & Arnab Kumar Laha, 2024. "Diffusion on the circle and a stochastic correlation model," Papers 2412.06343, arXiv.org.
    40. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
    41. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    42. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    43. David Edmund Allen, 2020. "Stochastic Volatility and GARCH: Do Squared End-of-Day Returns Provide Similar Information?," JRFM, MDPI, vol. 13(9), pages 1-25, September.
    44. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Documentos de Trabajo del ICAE 2012-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    45. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    46. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    47. Jarjour, Riad & Chan, Kung-Sik, 2020. "Dynamic conditional angular correlation," Journal of Econometrics, Elsevier, vol. 216(1), pages 137-150.
    48. McAleer, M.J., 2008. "The ten commandments for optimizing value-at-risk and daily capital charges," Econometric Institute Research Papers EI 2008-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    49. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    50. Alin Sima, 2008. "Stylized Facts and Discrete Stochastic Volatility Models," Advances in Economic and Financial Research - DOFIN Working Paper Series 10, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    51. Chen, J. & Kobayashi, M. & McAleer, M.J., 2017. "Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models," Econometric Institute Research Papers TI 2017-022/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    52. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    53. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    54. Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
    55. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
    56. Kobayashi, Masahito, 2009. "Testing for jumps in the stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2597-2608.
    57. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    58. Armine Bagyan & Donald Richards, 2023. "Hoffmann-Jørgensen Inequalities for Random Walks on the Cone of Positive Definite Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1181-1202, June.
    59. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    60. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    61. Massimiliano Caporin & Michael McAleer, 2009. "A Scientific Classification of Volatility Models," Documentos de Trabajo del ICAE 2009-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    62. Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
    63. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," Working Papers hal-04141780, HAL.
    64. Krause, Timothy A., 2019. "Hedge fund returns and uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 597-601.
    65. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    66. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    67. Boswijk, H Peter & Cavaliere, Giuseppe & De Angelis, Luca & Taylor, AM Robert, 2022. "Adaptive information-based methods for determining the co-integration rank in heteroskedastic VAR models," Essex Finance Centre Working Papers 33707, University of Essex, Essex Business School.
    68. Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    69. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    70. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    71. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    72. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    73. Ding, Liang & Vo, Minh, 2012. "Exchange rates and oil prices: A multivariate stochastic volatility analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 15-37.
    74. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    75. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    76. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    77. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    78. Olson, Eric & J. Vivian, Andrew & Wohar, Mark E., 2014. "The relationship between energy and equity markets: Evidence from volatility impulse response functions," Energy Economics, Elsevier, vol. 43(C), pages 297-305.
    79. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    80. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    81. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    82. Jiří Witzany, 2011. "Estimating Correlated Jumps and Stochastic Volatilities," Working Papers IES 2011/35, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2011.
    83. Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
    84. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2016. "Testing for a Common Volatility Process and Information Spillovers in Bivariate Financial Time Series Models," Documentos de Trabajo del ICAE 2016-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    85. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Working Papers ECARES ECARES 2015-34, ULB -- Universite Libre de Bruxelles.
    86. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    87. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    88. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.
    89. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    90. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-21, February.
    91. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    92. Juan-Angel Jimenez-Martin & Michael McAleer & Teodosio Pérez-Amaral, 2009. "The Ten Commandments for Managing Value-at-Risk Under the Basel II Accord," Documentos de Trabajo del ICAE 2009-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    93. Hiroaki Hata & Jun Sekine, 2017. "Risk-Sensitive Asset Management in a Wishart-Autoregressive Factor Model with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 221-252, September.
    94. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    95. Mengheng Li & Marcel Scharth, 2022. "Leverage, Asymmetry, and Heavy Tails in the High-Dimensional Factor Stochastic Volatility Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 285-301, January.
    96. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    97. Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    98. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    99. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    100. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    101. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    102. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    103. Hartwig, Benny, 2020. "Robust Inference in Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224528, Verein für Socialpolitik / German Economic Association.
    104. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    105. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    106. Huang Xiao, 2013. "Quasi-maximum likelihood estimation of multivariate diffusions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 179-197, April.
    107. G.K. Chetan Kumar & K.B. Rangappa & S. Suchitra, 2022. "Normative analysis of the impact of Covid-19 on prominent sectors of Indian economy by using ARCH Model," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(631), S), pages 151-164, Summer.
    108. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    109. Chen Gong & David S. Stoffer, 2021. "A Note on Efficient Fitting of Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 186-200, March.
    110. Athanasios Tsagkanos & Konstantinos Gkillas & Christoforos Konstantatos & Christos Floros, 2021. "Does Trading Volume Drive Systemic Banks’ Stock Return Volatility? Lessons from the Greek Banking System," IJFS, MDPI, vol. 9(2), pages 1-13, April.
    111. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    112. Masaru Chiba & Masahito Kobayashi, 2013. "Testing for a Single-Factor Stochastic Volatility in Bivariate Series," JRFM, MDPI, vol. 6(1), pages 1-31, December.
    113. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    114. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    115. Gao, Jiti & McAleer, Michael & Allen, David E., 2008. "Econometric modelling in finance and risk management: An overview," Journal of Econometrics, Elsevier, vol. 147(1), pages 1-4, November.
    116. Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
    117. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
    118. Hashem Zarafat & Sascha Liebhardt & Mustafa Hakan Eratalay, 2022. "Do ESG Ratings Reduce the Asymmetry Behavior in Volatility?," JRFM, MDPI, vol. 15(8), pages 1-32, July.
    119. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    120. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    121. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    122. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    123. Ming Lin & Changjiang Liu & Linlin Niu, 2013. "Bayesian Estimation of Wishart Autoregressive Stochastic Volatility Model," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    124. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    125. Matteo Barigozzi & Marc Hallin, 2018. "Generalized Dynamic Factor Models and Volatilities: Consistency, rates, and prediction intervals," Papers 1811.10045, arXiv.org, revised Jul 2019.
    126. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    127. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    128. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," EconomiX Working Papers 2018-14, University of Paris Nanterre, EconomiX.
    129. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    130. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
    131. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    132. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    133. Moawia Alghalith & Christos Floros & Konstantinos Gkillas, 2020. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility," Risks, MDPI, vol. 8(2), pages 1-15, April.
    134. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
    135. Martina Danielova Zaharieva & Mark Trede & Bernd Wilfling, 2017. "Bayesian semiparametric multivariate stochastic volatility with an application to international stock-market co-movements," CQE Working Papers 6217, Center for Quantitative Economics (CQE), University of Muenster.
    136. Benjamin Poignard & Jean-Davis Fermanian, 2014. "Dynamic Asset Correlations Based on Vines," Working Papers 2014-46, Center for Research in Economics and Statistics.
    137. Ming Ma & Jing Zhang, 2023. "RETRACTED ARTICLE: A Bayesian analysis based on multivariate stochastic volatility model: evidence from green stocks," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-14, January.
    138. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    139. Elena Hadjicosta & Donald Richards, 2020. "Integral transform methods in goodness-of-fit testing, II: the Wishart distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1317-1370, December.
    140. Lakshina, Valeriya, 2014. "Is it possible to break the «curse of dimensionality»? Spatial specifications of multivariate volatility models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 36(4), pages 61-78.
    141. Jean-David Fermanian, 2017. "Recent Developments in Copula Models," Econometrics, MDPI, vol. 5(3), pages 1-3, July.
    142. Roberto Casarin & Domenico sartore, 2008. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 0816, University of Brescia, Department of Economics.
    143. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    144. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    145. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    146. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    147. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
    148. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    149. Stanislav S Borysov & Alexander V Balatsky, 2014. "Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    150. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.
    151. Yingying Xu & Donald Lien, 2020. "Optimal futures hedging for energy commodities: An application of the GAS model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1090-1108, July.
    152. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    153. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    154. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    155. Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
    156. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.

  41. Manabu Asai & Michael McAleer, 2005. "Dynamic Asymmetric Leverage in Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 317-332.

    Cited by:

    1. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    2. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
    3. León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    4. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Zea Bermudez, Patrícia de, 2019. "Data cloning estimation for asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 28214, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    7. Asai, Manabu & McAleer, Michael & de Veiga, Bernardo, 2008. "Portfolio single index (PSI) multivariate conditional and stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 209-214.
    8. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    9. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    10. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    11. Lee, Cheol Woo & Kang, Kyu Ho, 2023. "Estimating and testing skewness in a stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 445-467.
    12. McAleer, M.J., 2008. "The ten commandments for optimizing value-at-risk and daily capital charges," Econometric Institute Research Papers EI 2008-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    14. Aycan HEPSAG, 2016. "Asymmetric stochastic volatility in central and eastern European stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(607), S), pages 135-144, Summer.
    15. Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2012. "On Geometric Ergodicity of Skewed - SVCHARME models," Papers 1209.1544, arXiv.org.
    16. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    17. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    18. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    19. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    20. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
    21. Umberto Triacca & Fulvia Focker, 2014. "Estimating overnight volatility of asset returns by using the generalized dynamic factor model approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 235-254, October.
    22. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    23. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    24. George Kapetanios & Elias Tzavalis, 2006. "Stochastic Volatility Driven by Large Shocks," Working Papers 568, Queen Mary University of London, School of Economics and Finance.
    25. Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
    26. Tomasz Skoczylas, 2015. "Bivariate GARCH models for single asset returns," Working Papers 2015-03, Faculty of Economic Sciences, University of Warsaw.
    27. Li, Johnny Siu-Hang & Ng, Andrew C.Y. & Chan, Wai-Sum, 2015. "Managing financial risk in Chinese stock markets: Option pricing and modeling under a multivariate threshold autoregression," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 217-230.
    28. Fulvia Focker & Umberto Triacca, 2006. "A new proxy of the average volatility of a basket of returns: A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-14.
    29. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
    30. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    31. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
    32. Cathy Chen & Feng-Chi Liu & Mike So, 2013. "Threshold variable selection of asymmetric stochastic volatility models," Computational Statistics, Springer, vol. 28(6), pages 2415-2447, December.
    33. Mao, Xiuping & Ruiz, Esther & Veiga, Helena, 2017. "Threshold stochastic volatility: Properties and forecasting," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1105-1123.

  42. Manabu Asai, 2005. "Comparison of MCMC Methods for Estimating Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 281-301, June.

    Cited by:

    1. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    2. Roberto Leon-Gonzalez, 2018. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 17-16, National Graduate Institute for Policy Studies.
    3. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    4. Didit Nugroho & Takayuki Morimoto, 2015. "Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods," Computational Statistics, Springer, vol. 30(2), pages 491-516, June.
    5. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.

  43. Manabu Asai, 1999. "Time series evidence on a new Keynesian theory of the output-inflation trade-off," Applied Economics Letters, Taylor & Francis Journals, vol. 6(9), pages 539-541.

    Cited by:

    1. Sim, Chong Yang, 2021. "A Review on Output-Inflation Trade-off Based on New Classical and New Keynesian Theories," MPRA Paper 105767, University Library of Munich, Germany.
    2. W. Wascher & Palle S. Andersen, 1999. "Sacrifice ratios and the conduct of monetary policy in conditions of low inflation," BIS Working Papers 82, Bank for International Settlements.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.