IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v98y2015icp59-64.html
   My bibliography  Save this article

On the degrees of freedom in MCMC-based Wishart models for time series data

Author

Listed:
  • Xiao, Yuewen
  • Ku, Yu-Cheng
  • Bloomfield, Peter
  • Ghosh, Sujit K.

Abstract

The Wishart distribution has long been a useful tool for modeling covariance structures. According to Gyndikin’s theorem, the degrees of freedom (df) for a Wishart distribution can be any real number belonging to the Gyndikin set, either integer-valued or fractional. However, the fractional-df versioned Wishart distribution has received only limited attention, which may lead to inaccurate implementation in practice. This paper shows by a numerical example that, when implementing Markov chain Monte Carlo (MCMC) methods in Wishart models for time series data, the lack of attention to the fractional df where necessary can result in seriously biased posterior estimation due to the compounding errors caused by the time dependency assumption. We further conduct a sensitivity analysis to explain why the seemingly small difference between the integer-valued df and the fractional df leads to very different outcomes.

Suggested Citation

  • Xiao, Yuewen & Ku, Yu-Cheng & Bloomfield, Peter & Ghosh, Sujit K., 2015. "On the degrees of freedom in MCMC-based Wishart models for time series data," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 59-64.
  • Handle: RePEc:eee:stapro:v:98:y:2015:i:c:p:59-64
    DOI: 10.1016/j.spl.2014.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214004155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philipov, Alexander & Glickman, Mark E., 2006. "Multivariate Stochastic Volatility via Wishart Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 313-328, July.
    2. Alexander Philipov & Mark Glickman, 2006. "Factor Multivariate Stochastic Volatility via Wishart Processes," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 311-334.
    3. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    2. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    3. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    4. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    5. Shirota, Shinichiro & Omori, Yasuhiro & F. Lopes, Hedibert. & Piao, Haixiang, 2017. "Cholesky realized stochastic volatility model," Econometrics and Statistics, Elsevier, vol. 3(C), pages 34-59.
    6. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    7. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    8. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    9. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    10. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Emanuel Kohlscheen & Jouchi Nakajima, 2021. "Steady‐state growth," International Finance, Wiley Blackwell, vol. 24(1), pages 40-52, April.
    12. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    13. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    14. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    15. Francisco Ortiz Arango & Alma Nelly Montiel Guzmán, 2017. "Transmisión de precios futuros de maíz del Chicago Board of Trade al mercado spot mexicano," Contaduría y Administración, Accounting and Management, vol. 62(3), pages 924-940, Julio-Sep.
    16. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    17. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
    18. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    19. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
    20. Francisco Ortiz Arango & Alma Nelly Montiel Guzmán, 2017. "Transmission of future prices of corn of the Chicago Board of Trade to the Mexican spot market," Contaduría y Administración, Accounting and Management, vol. 62(3), pages 941-957, Julio-Sep.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:98:y:2015:i:c:p:59-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.