Vine-copula GARCH model with dynamic conditional dependence
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2013.08.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
- Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
- Andrew J. Patton, 2006.
"Estimation of multivariate models for time series of possibly different lengths,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
- Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173.
- Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
- Almeida, Carlos & Czado, Claudia, 2012. "Efficient Bayesian inference for stochastic time-varying copula models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1511-1527.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
- Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
- Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
- Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
- François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
- Kim, Jong-Min & Jung, Yoon-Sung & Choi, Taeryon & Sungur, Engin A., 2011. "Partial correlation with copula modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1357-1366, March.
- Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
- Dias, Alexandra & Embrechts, Paul, 2010. "Modeling exchange rate dependence dynamics at different time horizons," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1687-1705, December.
- Aleksey Min & Claudia Czado, 2010. "Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 511-546, Fall.
- Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
- Smith, Michael & Min, Aleksey & Almeida, Carlos & Czado, Claudia, 2010. "Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1467-1479.
- Ausin, M. Concepcion & Lopes, Hedibert F., 2010. "Time-varying joint distribution through copulas," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2383-2399, November.
- Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".
- Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Giuseppe Arbia & Riccardo Bramante & Silvia Facchinetti, 2020. "Least Quartic Regression Criterion to Evaluate Systematic Risk in the Presence of Co-Skewness and Co-Kurtosis," Risks, MDPI, vol. 8(3), pages 1-14, September.
- Jiang, Cuixia & Li, Yuqian & Xu, Qifa & Liu, Yezheng, 2021. "Measuring risk spillovers from multiple developed stock markets to China: A vine-copula-GARCH-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 386-398.
- Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
- Tófoli Paula V. & Ziegelmann Flávio A. & Candido Osvaldo & Valls Pereira Pedro L., 2019.
"Dynamic D-Vine Copula Model with Applications to Value-at-Risk (VaR),"
Journal of Time Series Econometrics, De Gruyter, vol. 11(2), pages 1-34, July.
- Tófoli, Paula Virgínia & Ziegelmann, Flávio Augusto & Silva Filho, Osvaldo Candido & Pereira, Pedro L. Valls, 2016. "Dynamic D-Vine copula model with applications to Value-at-Risk (VaR)," Textos para discussão 424, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Quanrui Song & Jianxu Liu & Songsak Sriboonchitta, 2019. "Risk Measurement of Stock Markets in BRICS, G7, and G20: Vine Copulas versus Factor Copulas," Mathematics, MDPI, vol. 7(3), pages 1-16, March.
- Timothy M. Young & Ampalavanar Nanthakumar & Hari Nanthakumar, 2021. "On the Use of Copula for Quality Control Based on an AR(1) Model," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Han, Yingwei & Li, Jie, 2022. "Should investors include green bonds in their portfolios? Evidence for the USA and Europe," International Review of Financial Analysis, Elsevier, vol. 80(C).
- BenSaïda, Ahmed, 2018. "The contagion effect in European sovereign debt markets: A regime-switching vine copula approach," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 153-165.
- Han, Xuyuan & Liu, Zhenya & Wang, Shixuan, 2022. "An R-vine copula analysis of non-ferrous metal futures with application in Value-at-Risk forecasting," Journal of Commodity Markets, Elsevier, vol. 25(C).
- Zhang, Bangzheng & Wei, Yu & Yu, Jiang & Lai, Xiaodong & Peng, Zhenfeng, 2014. "Forecasting VaR and ES of stock index portfolio: A Vine copula method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 112-124.
- Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
- Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
- Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
- Jianxu Liu & Mengjiao Wang & Songsak Sriboonchitta, 2019. "Examining the Interdependence between the Exchange Rates of China and ASEAN Countries: A Canonical Vine Copula Approach," Sustainability, MDPI, vol. 11(19), pages 1-20, October.
- Derumigny, Alexis & Fermanian, Jean-David, 2019. "A classification point-of-view about conditional Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 70-94.
- Zhou, Rui & Ji, Min, 2021. "Modelling mortality dependence: An application of dynamic vine copula," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 241-255.
- Rewat Khanthaporn, 2022. "Analysis of Nonlinear Comovement of Benchmark Thai Government Bond Yields," PIER Discussion Papers 183, Puey Ungphakorn Institute for Economic Research.
- Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
- Do, A. & Powell, R. & Yong, J. & Singh, A., 2020. "Time-varying asymmetric volatility spillover between global markets and China’s A, B and H-shares using EGARCH and DCC-EGARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
- repec:cte:wsrepe:24552 is not listed on IDEAS
- Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
- Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
- Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018.
"Time series copulas for heteroskedastic data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
- Rub'en Loaiza-Maya & Michael S. Smith & Worapree Maneesoonthorn, 2017. "Time Series Copulas for Heteroskedastic Data," Papers 1701.07152, arXiv.org.
- Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
- Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
- Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024.
"Empirical Performance of an ESG Assets Portfolio from US Market,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
- Frédy Valé Manuel Pokou & Jules Sadefo Kamdem & François Benhmad, 2023. "Empirical Performance of an ESG Assets Portfolio from US Market," Post-Print hal-04312348, HAL.
- Bartram, Sohnke M. & Taylor, Stephen J. & Wang, Yaw-Huei, 2007. "The Euro and European financial market dependence," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1461-1481, May.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
- Anubha Goel & Aparna Mehra, 2019. "Analyzing Contagion Effect in Markets During Financial Crisis Using Stochastic Autoregressive Canonical Vine Model," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 921-950, March.
- Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009.
"Modeling International Financial Returns with a Multivariate Regime-switching Copula,"
Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
- Loran , CHOLLETTE & Andreas , HEINEN & Alfonso , VALDESOGO, 2008. "Modelling international financial returns with a multivariate regime switching copula," Discussion Papers (ECON - Département des Sciences Economiques) 2008011, Université catholique de Louvain, Département des Sciences Economiques.
- Chollete, Loran & Heinen, Andreas & Valdesogo, Alfonso, 2008. "Modeling International Financial Returns with a Multivariate Regime Switching Copula," MPRA Paper 8114, University Library of Munich, Germany.
- CHOLLETE, Loran & HEINEN, Andréas & VALDESOGO, Alfonso, 2008. "Modeling international financial returns with a multivariate regime switching copula," LIDAM Discussion Papers CORE 2008013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Chollete, Lorán & Heinen, Andréas & Valdesogo, Alfonso, 2008. "Modeling International Financial Returns with a Multivariate Regime Switching Copula," Discussion Papers 2008/3, Norwegian School of Economics, Department of Business and Management Science.
- Martin Hoesli & Kustrim Reka, 2013.
"Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets,"
The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
- Martin Hoesli & Kustrim Reka, 2011. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," ERES eres2011_63, European Real Estate Society (ERES).
- Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
- Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
- repec:dau:papers:123456789/13359 is not listed on IDEAS
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
- Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
- Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
More about this item
Keywords
Copula; GARCH; Time varying dependence; Vine decomposition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:655-671. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.