IDEAS home Printed from https://ideas.repec.org/p/rbp/wpaper/2010-001.html
   My bibliography  Save this paper

Redes neuronales para predecir el tipo de cambio diario

Author

Listed:
  • Barrera, Carlos R.

    (Banco Central de Reserva del Perú)

Abstract

Un problema recurrente es que los modelos estructurales de determinación del tipo de cambio no logran predecirlo con mayor precisión que un camino aleatorio. El objetivo de la presente investigación es verificar si es posible obtener proyecciones relativamente precisas generadas por un grupo de modelos econométricos para el tipo de cambio diario sobre la base de la muestra disponible enero 2004 - setiembre 2008. Los modelos a compararse en términos predictivos son: (a) camino aleatorio en el nivel del tipo de cambio; (b) auto-regresión con p rezagos en la variación del tipo de cambio; (c) perceptrones con p rezagos en la variación del tipo de cambio y (d) auto-regresión fraccional con p rezagos en el nivel del tipo de cambio. Los resultados obtenidos confirman que los perceptrones poseen la capacidad para anticipar el patrón de los movimientos diarios en el tipo de cambio, especialmente cuando se utiliza el spread entre el tipo de cambio venta y compra como porcentaje del tipo de cambio promedio de estas dos cotizaciones, la depreciación diaria del yen contra el dólar americano y el diferencial de tasas domésticas de interés interbancarias en ambas monedas.

Suggested Citation

  • Barrera, Carlos R., 2010. "Redes neuronales para predecir el tipo de cambio diario," Working Papers 2010-001, Banco Central de Reserva del Perú.
  • Handle: RePEc:rbp:wpaper:2010-001
    as

    Download full text from publisher

    File URL: https://www.bcrp.gob.pe/docs/Publicaciones/Documentos-de-Trabajo/2010/Documento-de-Trabajo-01-2010.pdf
    File Function: Application/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin D.D. Evans & Richard K. Lyons, 2017. "Order Flow and Exchange Rate Dynamics," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 6, pages 247-290, World Scientific Publishing Co. Pte. Ltd..
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Jan J. J. Groen, 1999. "Long horizon predictability of exchange rates: Is it for real?," Empirical Economics, Springer, vol. 24(3), pages 451-469.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    6. Philippe Bacchetta & Eric Van Wincoop, 2004. "A Scapegoat Model of Exchange-Rate Fluctuations," American Economic Review, American Economic Association, vol. 94(2), pages 114-118, May.
    7. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    8. MacDonald, Ronald & Taylor, Mark P., 1994. "The monetary model of the exchange rate: long-run relationships, short-run dynamics and how to beat a random walk," Journal of International Money and Finance, Elsevier, vol. 13(3), pages 276-290, June.
    9. Olgun, Hasan & Ozdemir, Zeynel Abidin, 2008. "Linkages between the center and periphery stock prices: Evidence from the vector ARFIMA model," Economic Modelling, Elsevier, vol. 25(3), pages 512-519, May.
    10. Rech, Gianluigi & Teräsvirta, Timo & Tschernig, Rolf, 1999. "A simple variable selection technique for nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 296, Stockholm School of Economics, revised 06 Apr 2000.
    11. Pollock, Andrew C. & Macaulay, Alex & Thomson, Mary E. & Onkal, Dilek, 2005. "Performance evaluation of judgemental directional exchange rate predictions," International Journal of Forecasting, Elsevier, vol. 21(3), pages 473-489.
    12. Charles Bond & Ken Richardson, 2004. "Seeing the FisherZ-transformation," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 291-303, June.
    13. Yang, Kun & Shintani, Mototsugu, 2006. "Does the prediction horizon matter for the forward premium anomaly? Evidence from panel data," Economics Letters, Elsevier, vol. 93(2), pages 255-260, November.
    14. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    15. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
    16. Manabu Asai & Michael McAleer, 2007. "Non-trading day effects in asymmetric conditional and stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 113-123, March.
    17. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    18. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos R. Barrera Chaupis, 2018. "Inventory Adjustments to Demand Shocks under Flexible Specifications," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(1), pages 149-201, january-j.
    2. Barrera, Carlos R., 2011. "Impacto amplificador del ajuste de inventarios ante choques de demanda según especificaciones flexibles," Working Papers 2011-009, Banco Central de Reserva del Perú.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    2. Christopher J. Neely & Lucio Sarno, 2002. "How well do monetary fundamentals forecast exchange rates?," Review, Federal Reserve Bank of St. Louis, vol. 84(Sep), pages 51-74.
    3. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Burns, Kelly & Moosa, Imad A., 2015. "Enhancing the forecasting power of exchange rate models by introducing nonlinearity: Does it work?," Economic Modelling, Elsevier, vol. 50(C), pages 27-39.
    6. Park, Yang-Ho, 2022. "Informed trading in foreign exchange futures: Payroll news timing," Journal of Banking & Finance, Elsevier, vol. 135(C).
    7. Uz, Idil & Ketenci, Natalya, 2008. "Panel analysis of the monetary approach to exchange rates: Evidence from ten new EU members and Turkey," Emerging Markets Review, Elsevier, vol. 9(1), pages 57-69, March.
    8. Mr. Tobias Adrian & Peichu Xie, 2020. "The Non-U.S. Bank Demand for U.S. Dollar Assets," IMF Working Papers 2020/101, International Monetary Fund.
    9. Kim, Young Se, 2009. "Exchange rates and fundamentals under adaptive learning," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 843-863, April.
    10. José Luiz Rossi Júnior & Pedro Fontoura & Marina Rossi, 2023. "Are Global Factors Useful for Forecasting the Exchange Rate?," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(6), pages 1-14.
    11. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    12. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    13. Alexius, Annika, 2001. "How to Beat the Random Walk," Working Paper Series 175, Trade Union Institute for Economic Research.
    14. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    15. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    16. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    17. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    18. repec:lan:wpaper:470 is not listed on IDEAS
    19. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    20. Wu, Jyh-Lin, 1999. "A re-examination of the exchange rate-interest differential relationship: evidence from Germany and Japan," Journal of International Money and Finance, Elsevier, vol. 18(2), pages 319-336, February.
    21. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.

    More about this item

    Keywords

    Auge crediticio; política monetaria;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbp:wpaper:2010-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit (email available below). General contact details of provider: https://edirc.repec.org/data/bcrgvpe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.