IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/96313.html
   My bibliography  Save this paper

Inference for likelihood-based estimators of generalized long-memory processes

Author

Listed:
  • Beaumont, Paul
  • Smallwood, Aaron

Abstract

Despite a recent proliferation of research using cyclical long memory, surprisingly little is known regarding the asymptotic properties of likelihood-based methods. Estimators have been studied in both the time and frequency domains for the Gegenbauer autoregressive moving average process (GARMA). However, a full set of asymptotic results for all parameters has only been proposed by Chung (1996a,b), who present somewhat tenuous results without an initial consistency proof. In this paper, we review the GARMA process and the properties of frequency and time domain likelihood-based estimators using Monte Carlo analysis. The results demonstrate the strong efficacy of both estimators and generally sup- port the proposed theory of Chung for the parameter governing the cycle length. Important caveats await. The results show that asymptotic confidence bands can be unreliable in very small samples under weak long memory, and the distribution theory under the null of an infinitely long cycle appears to be unusable. Possible solutions are proposed, including the use of narrower confidence bands and the application of theory under the alternative of finite cycles.

Suggested Citation

  • Beaumont, Paul & Smallwood, Aaron, 2019. "Inference for likelihood-based estimators of generalized long-memory processes," MPRA Paper 96313, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:96313
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/96313/1/MPRA_paper_96313.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    2. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    3. Maria Caporale, Guglielmo & A. Gil-Alana, Luis, 2011. "Multi-Factor Gegenbauer Processes and European Inflation Rates," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 26, pages 386-409.
    4. Reisen, Valdério A. & Zamprogno, Bartolomeu & Palma, Wilfredo & Arteche, Josu, 2014. "A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 1-17.
    5. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    6. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    7. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    8. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    9. Liudas Giraitis & Javier Hidalgo & Peter M Robinson, 2001. "Gaussian Estimation of Parametric Spectral Density with Unknown Pole," STICERD - Econometrics Paper Series 424, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. M. Shelton Peiris & Manabu Asai, 2016. "Generalized Fractional Processes with Long Memory and Time Dependent Volatility Revisited," Econometrics, MDPI, vol. 4(3), pages 1-21, September.
    11. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    12. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    13. Hidalgo, Javier, 2005. "Semiparametric estimation for stationary processes whose spectra have an unknown pole," LSE Research Online Documents on Economics 6842, London School of Economics and Political Science, LSE Library.
    14. Javier Hidalgo, 2005. "Semiparametric Estimation for Stationary Processes whose Spectra have an Unknown Pole," STICERD - Econometrics Paper Series 481, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    15. Leschinski, Christian & Sibbertsen, Philipp, 2019. "Model order selection in periodic long memory models," Econometrics and Statistics, Elsevier, vol. 9(C), pages 78-94.
    16. Javier Hidalgo & Philippe Soulier, 2004. "Estimation of the location and exponent of the spectral singularity of a long memory process," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 55-81, January.
    17. Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
    18. Ching‐Fan Chung, 1996. "A Generalized Fractionally Integrated Autoregressive Moving‐Average Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(2), pages 111-140, March.
    19. Ramachandran, Rajalakshmi & Beaumont, Paul, 2001. "Robust Estimation of GARMA Model Parameters with an Application to Cointegration among Interest Rates of Industrialized Countries," Computational Economics, Springer;Society for Computational Economics, vol. 17(2-3), pages 179-201, June.
    20. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.
    21. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    22. Wayne A. Woodward & Q. C. Cheng & H. L. Gray, 1998. "A k‐Factor GARMA Long‐memory Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 485-504, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beaumont, Paul & Smallwood, Aaron, 2019. "Conditional Sum of Squares Estimation of Multiple Frequency Long Memory Models," MPRA Paper 96314, University Library of Munich, Germany.
    2. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    3. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    4. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    5. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    6. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    7. Paul M. Beaumont & Aaron D. Smallwood, 2024. "Conditional sum of squares estimation of k-factor GARMA models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 501-543, September.
    8. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.
    9. Federico Maddanu, 2022. "A harmonically weighted filter for cyclical long memory processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 49-78, March.
    10. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    11. Gil-Alana, Luis A. & Gupta, Rangan, 2014. "Persistence and cycles in historical oil price data," Energy Economics, Elsevier, vol. 45(C), pages 511-516.
    12. Abadir, Karim M. & Caggiano, Giovanni & Talmain, Gabriel, 2013. "Nelson–Plosser revisited: The ACF approach," Journal of Econometrics, Elsevier, vol. 175(1), pages 22-34.
    13. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    14. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    15. Javier Hidalgo & Philippe Soulier, 2004. "Estimation of the location and exponent of the spectral singularity of a long memory process," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 55-81, January.
    16. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    17. repec:hal:journl:peer-00815563 is not listed on IDEAS
    18. Ould Haye, Mohamedou & Philippe, Anne, 2011. "Marginal density estimation for linear processes with cyclical long memory," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1354-1364, September.
    19. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    20. Dominique Guegan & Laurent Ferrara, 2008. "Fractional and seasonal filtering," PSE-Ecole d'économie de Paris (Postprint) halshs-00646178, HAL.
    21. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.

    More about this item

    Keywords

    long memory; GARMA; CSS estimator; Whittle estimator;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:96313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.