IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03561-w.html
   My bibliography  Save this article

Modelling and forecasting crude oil price volatility with climate policy uncertainty

Author

Listed:
  • Mengxi He

    (Nanjing University of Science and Technology)

  • Yaojie Zhang

    (Nanjing University of Science and Technology)

  • Yudong Wang

    (Nanjing University of Science and Technology)

  • Danyan Wen

    (Nanjing University of Science and Technology)

Abstract

The impact of climate risk on economic and financial fields has attracted considerable interest from academics and practitioners. Recent literature documents that climate risk can affect oil volatility through the dual channel of economic activities and financial markets. Inspired by this, this paper uses climate policy uncertainty (CPU) to examine the predictability of crude oil price volatility. The empirical results indicate that changes in the CPU, rather than the original CPU, can forecast oil volatility. The revealed volatility predictability is both in-sample and out-of-sample. Asset allocation exercise shows that this finding is also economically significant. Furthermore, the predictive ability is mainly concentrated during economic expansions and the CPU contains climate risk that is not available for other predictors. Finally, CPU change indicators can explain the changes in crude oil consumption, which is the economic source of their predictive power.

Suggested Citation

  • Mengxi He & Yaojie Zhang & Yudong Wang & Danyan Wen, 2024. "Modelling and forecasting crude oil price volatility with climate policy uncertainty," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03561-w
    DOI: 10.1057/s41599-024-03561-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03561-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03561-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng Ma & M. I. M. Wahab & Jing Liu & Li Liu, 2018. "Is economic policy uncertainty important to forecast the realized volatility of crude oil futures?," Applied Economics, Taylor & Francis Journals, vol. 50(18), pages 2087-2101, April.
    2. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    3. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    4. Caggiano, Giovanni & Castelnuovo, Efrem & Groshenny, Nicolas, 2014. "Uncertainty shocks and unemployment dynamics in U.S. recessions," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 78-92.
    5. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    6. Yuqin Zhou & Shan Wu & Zhenhua Liu & Lavinia Rognone, 2023. "The asymmetric effects of climate risk on higher-moment connectedness among carbon, energy and metals markets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    8. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    9. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "The impact of oil price shocks on the stock market return and volatility relationship," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 41-54.
    10. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    11. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    12. Stefano Battiston & Antoine Mandel & Irene Monasterolo & Franziska Schütze & Gabriele Visentin, 2017. "A climate stress-test of the financial system," Nature Climate Change, Nature, vol. 7(4), pages 283-288, April.
    13. Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "News-based equity market uncertainty and crude oil volatility," Energy, Elsevier, vol. 222(C).
    14. Byeong-Je An & Andrew Ang & Turan G. Bali & Nusret Cakici, 2014. "The Joint Cross Section of Stocks and Options," Journal of Finance, American Finance Association, vol. 69(5), pages 2279-2337, October.
    15. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    16. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    17. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    19. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    20. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    21. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    22. Thomas C. Chiang, 2021. "Geopolitical risk, economic policy uncertainty and asset returns in Chinese financial markets," China Finance Review International, Emerald Group Publishing Limited, vol. 11(4), pages 474-501, March.
    23. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    24. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    25. Lin, Boqiang & Chen, Yiyang & Gong, Xu, 2024. "Stress from attention: The relationship between climate change attention and crude oil markets," Journal of Commodity Markets, Elsevier, vol. 34(C).
    26. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    27. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    28. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    29. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    30. Bartsch, Zachary, 2019. "Economic policy uncertainty and dollar-pound exchange rate return volatility," Journal of International Money and Finance, Elsevier, vol. 98(C), pages 1-1.
    31. Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market volatility: A newspaper-based predictor regarding petroleum market volatility," Resources Policy, Elsevier, vol. 79(C).
    32. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
    33. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    34. Paul Griffin & Amy Myers Jaffe, 2022. "Challenges for a climate risk disclosure mandate," Nature Energy, Nature, vol. 7(1), pages 2-4, January.
    35. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
    36. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    37. Xianfeng Hao & Yudong Wang, 2023. "Cloud cover and expected oil returns," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    38. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    39. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    40. Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
    41. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    42. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
    2. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    3. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    4. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    5. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    6. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    7. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    8. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
    9. Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market volatility: A newspaper-based predictor regarding petroleum market volatility," Resources Policy, Elsevier, vol. 79(C).
    10. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    11. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    12. Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    13. Tong Fang & Deyu Miao & Zhi Su & Libo Yin, 2023. "Uncertainty‐driven oil volatility risk premium and international stock market volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 872-904, July.
    14. Zeng, Qing & Lu, Xinjie & Dong, Dayong & Li, Pan, 2022. "Category-specific EPU indices, macroeconomic variables and stock market return predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
    15. Libo Yin, 2022. "The role of intermediary capital risk in predicting oil volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 401-416, January.
    16. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    17. Ferrer Fernández, María & Henry, Ólan & Pybis, Sam & Stamatogiannis, Michalis P., 2023. "Can we forecast better in periods of low uncertainty? The role of technical indicators," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 1-12.
    18. Ma, Feng & Guo, Yangli & Chevallier, Julien & Huang, Dengshi, 2022. "Macroeconomic attention, economic policy uncertainty, and stock volatility predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
    19. Dai, Zhifeng & Chang, Xiaoming, 2021. "Forecasting stock market volatility: Can the risk aversion measure exert an important role?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    20. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03561-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.