IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20170051.html
   My bibliography  Save this paper

Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA

Author

Listed:
  • Chia-Lin Chang

    (National Tsing Hua University, Taiwan)

  • Michael McAleer

    (National Tsing Hua University, Taiwan; University of Sydney Business School; Erasmus University Rotterdam, The Netherlands, Complutense University of Madrid, Spain and Yokohama National University, Japan.)

  • Guangdong Zuo

    (National Tsing Hua University, Taiwan)

Abstract

Recent research shows that efforts to limit climate change should focus on reducing emissions of carbon dioxide over other greenhouse gases or air pollutants. Many countries are paying substantial attention to carbon emissions to improve air quality and public health. The largest source of carbon emissions from human activities in some countries in Europe and elsewhere is from burning fossil fuels for electricity, heat, and transportation. The price of fuel influences carbon emissions, but the price of carbon emissions can also influence the price of fuel. Owing to the importance of carbon emissions and their connection to fossil fuels, and the possibility of Granger (1980) causality in spot and futures prices, returns and volatility of carbon emissions, it is not surprising that crude oil and coal have recently become a very important research topic. For the USA, daily spot and futures prices are available for crude oil and coal, but there are no daily spot or futures prices for carbon emissions. For the EU, there are no daily spot prices for coal or carbon emissions, but there are daily futures prices for crude oil, coal and carbon emissions. For this reason, daily prices will be used to analyse Granger causality and volatility spillovers in spot and futures prices of carbon emissions, crude oil, and coal. A likelihood ratio test is developed to test the multivariate conditional volatility Diagonal BEKK model, which has valid regularity conditions and asymptotic properties, against the alternative Full BEKK model, which has valid regularity conditions and asymptotic properties under the null hypothesis of zero off-diagonal elements. Dynamic hedging strategies using optimal hedge ratios will be suggested to analyse market fluctuations in the spot and futures returns and volatility of carbon emissions, crude oil and coal prices.

Suggested Citation

  • Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Tinbergen Institute Discussion Papers 17-051/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20170051
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/17051.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Chang, C-L. & McAleer, M.J., 2017. "The Fiction of Full BEKK," Econometric Institute Research Papers TI 2017-015/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Michael McAleer & Christian M. Hafner, 2014. "A One Line Derivation of EGARCH," Econometrics, MDPI, vol. 2(2), pages 1-6, June.
    6. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    7. Manabu Asai & Chia-Lin Chang & Michael McAleer, 2016. "Realized Matrix-Exponential Stochastic Volatility with Asymmetry, Long Memory and Spillovers," Tinbergen Institute Discussion Papers 16-076/III, Tinbergen Institute.
    8. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    9. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    10. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    11. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    12. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    13. Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020. "Realized stochastic volatility models with generalized Gegenbauer long memory," Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
    14. Christian M. Hafner & Michael McAleer, 2014. "A One Line Derivation of DCC: Application of a Vector Random Coefficient Moving Average Process," Documentos de Trabajo del ICAE 2014-29, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    15. Chia-Lin Chang & Michael McAleer, 2017. "A Simple Test for Causality in Volatility," Econometrics, MDPI, vol. 5(1), pages 1-5, March.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Chang, Chia-Lin & McAleer, Michael, 2019. "The fiction of full BEKK: Pricing fossil fuels and carbon emissions," Finance Research Letters, Elsevier, vol. 28(C), pages 11-19.
    18. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    19. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    20. Chang, C-L. & McAleer, M.J. & Wang, Y-A., 2016. "Modelling Volatility Spillovers for Bio-ethanol, Sugarcane and Corn," Econometric Institute Research Papers EI2016-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    21. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    22. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    23. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1554-1583, December.
    24. Michael mcAleer, 2017. "Stationarity and Invertibility of a Dynamic Correlation Matrix," Tinbergen Institute Discussion Papers 17-082/III, Tinbergen Institute.
    25. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    26. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    27. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    28. Hafner, Christian M. & Herwartz, Helmut, 2006. "A Lagrange multiplier test for causality in variance," Economics Letters, Elsevier, vol. 93(1), pages 137-141, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sibande, Xolani & Demirer, Riza & Balcilar, Mehmet & Gupta, Rangan, 2023. "On the pricing effects of bitcoin mining in the fossil fuel market: The case of coal," Resources Policy, Elsevier, vol. 85(PB).
    2. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    3. Hira Aftab & A. B. M. Rabiul Alam Beg, 2021. "Does Time Varying Risk Premia Exist in the International Bond Market? An Empirical Evidence from Australian and French Bond Market," IJFS, MDPI, vol. 9(1), pages 1-13, January.
    4. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    5. Chang, Chia-Lin & Mai, Te-Ke & McAleer, Michael, 2019. "Establishing national carbon emission prices for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 1-16.
    6. Chia-Lin Chang & Te-Ke Mai & Michael Mcaleer, 2018. "Pricing Carbon Emissions In China," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 1-37, September.
    7. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    8. Lau, Chi Keung & Soliman, Alaa M. & Albasu, Joseph & Gozgor, Giray, 2023. "Dependence structures among geopolitical risks, energy prices, and carbon emissions prices," Resources Policy, Elsevier, vol. 83(C).
    9. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    10. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    11. Chang, Chia-Lin & McAleer, Michael, 2019. "The fiction of full BEKK: Pricing fossil fuels and carbon emissions," Finance Research Letters, Elsevier, vol. 28(C), pages 11-19.
    12. Mai, Te-Ke & Foley, Aoife M. & McAleer, Michael & Chang, Chia-Lin, 2022. "Impact of COVID-19 on returns-volatility spillovers in national and regional carbon markets in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Imran Yousaf & Shoaib Ali & Wing-Keung Wong, 2020. "Return and Volatility Transmission between World-Leading and Latin American Stock Markets: Portfolio Implications," JRFM, MDPI, vol. 13(7), pages 1-19, July.
    14. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    15. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
    16. Shailesh Rastogi & Chaitaly Athaley, 2019. "Volatility Integration in Spot, Futures and Options Markets: A Regulatory Perspective," JRFM, MDPI, vol. 12(2), pages 1-15, June.
    17. Chia-Lin Chang & Michael McAleer, 2019. "Modeling Latent Carbon Emission Prices for Japan: Theory and Practice," Energies, MDPI, vol. 12(21), pages 1-21, November.
    18. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    19. Grzegorz Przekota, 2023. "Do Household Electricity Prices in European Union Countries Depend on the Energy Mix?," Energies, MDPI, vol. 16(21), pages 1-15, October.
    20. Yaxue Yan & Weijuan Liang & Banban Wang & Xiaoling Zhang, 2023. "Spillover effect among independent carbon markets: evidence from China’s carbon markets," Economic Change and Restructuring, Springer, vol. 56(5), pages 3065-3093, October.
    21. Xia Wang & Lijun Zhang & Yaochen Qin & Jingfei Zhang, 2020. "Analysis of China’s Manufacturing Industry Carbon Lock-In and Its Influencing Factors," Sustainability, MDPI, vol. 12(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    2. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    3. Chia-Lin Chang & Michael McAleer & Chien-Hsun Wang, 2017. "An Econometric Analysis of ETF and ETF Futures in Financial and Energy Markets Using Generated Regressors," IJFS, MDPI, vol. 6(1), pages 1-24, December.
    4. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    5. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    6. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    7. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    8. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2016. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn," Documentos de Trabajo del ICAE 2016-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    9. Chang, Chia-Lin & McAleer, Michael, 2019. "The fiction of full BEKK: Pricing fossil fuels and carbon emissions," Finance Research Letters, Elsevier, vol. 28(C), pages 11-19.
    10. Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "Risk Spillovers in Returns for Chinese and International Tourists to Taiwan," Tinbergen Institute Discussion Papers 18-031/III, Tinbergen Institute.
    11. Fengming Qin & Junru Zhang & Zhaoyong Zhang, 2018. "RMB Exchange Rates and Volatility Spillover across Financial Markets in China and Japan," Risks, MDPI, vol. 6(4), pages 1-26, October.
    12. Chang, C-L. & McAleer, M.J. & Wang, Y-A., 2018. "Latent Volatility Granger Causality and Spillovers in Renewable Energy and Crude Oil ETFs," Econometric Institute Research Papers TI 2018-052/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    14. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    15. Muhammad Irfan Malik & Abdul Rashid, 2017. "Return And Volatility Spillover Between Sectoral Stock And Oil Price: Evidence From Pakistan Stock Exchange," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 1-22, June.
    16. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    17. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    18. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    19. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    20. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.

    More about this item

    Keywords

    Carbon emissions; Fossil fuels; Crude oil; Coal; Low carbon targets; Green energy; Spot and futures prices; Granger causality and volatility spillovers; Likelihood ration test; Diagonal BEKK; Full BEKK; Dynamic hedging;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20170051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.