IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246209.html
   My bibliography  Save this article

Time-varying properties of asymmetric volatility and multifractality in Bitcoin

Author

Listed:
  • Tetsuya Takaishi

Abstract

This study investigates the volatility of daily Bitcoin returns and multifractal properties of the Bitcoin market by employing the rolling window method and examines relationships between the volatility asymmetry and market efficiency. Whilst we find an inverted asymmetry in the volatility of Bitcoin, its magnitude changes over time, and recently, it has become small. This asymmetric pattern of volatility also exists in higher frequency returns. Other measurements, such as kurtosis, skewness, average, serial correlation, and multifractal degree, also change over time. Thus, we argue that properties of the Bitcoin market are mostly time dependent. We examine efficiency-related measures: the Hurst exponent, multifractal degree, and kurtosis. We find that when these measures represent that the market is more efficient, the volatility asymmetry weakens. For the recent Bitcoin market, both efficiency-related measures and the volatility asymmetry prove that the market becomes more efficient.

Suggested Citation

  • Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-21, February.
  • Handle: RePEc:plo:pone00:0246209
    DOI: 10.1371/journal.pone.0246209
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246209
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246209&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    2. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    7. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.
    8. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    9. Koutmos, Dimitrios, 2018. "Bitcoin returns and transaction activity," Economics Letters, Elsevier, vol. 167(C), pages 81-85.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    11. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    12. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    13. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Signatures of crypto-currency market decoupling from the Forex," Papers 1906.07834, arXiv.org, revised Jul 2019.
    14. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    15. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    16. Roll, Richard, 1977. "A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory," Journal of Financial Economics, Elsevier, vol. 4(2), pages 129-176, March.
    17. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2019. "A novel approach to detect volatility clusters in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Takaishi, Tetsuya & Adachi, Takanori, 2018. "Taylor effect in Bitcoin time series," Economics Letters, Elsevier, vol. 172(C), pages 5-7.
    19. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    20. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    21. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    22. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    23. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    24. Raj Kumar Pan & Sitabhra Sinha, 2006. "Self-organization of price fluctuation distribution in evolving markets," Papers physics/0606213, arXiv.org, revised May 2007.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    2. T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
    3. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    4. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    5. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    6. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    7. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    8. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    9. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    14. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    15. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    16. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    18. Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.
    19. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    20. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.