Jump Aggregation, Volatility Prediction, and Nonlinear Estimation of Banks’ Sustainability Risk
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jooyong Shim & Yongtae Kim & Jangtaek Lee & Changha Hwang, 2012. "Estimating value at risk with semiparametric support vector quantile regression," Computational Statistics, Springer, vol. 27(4), pages 685-700, December.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Brandao-Marques, Luis & Correa, Ricardo & Sapriza, Horacio, 2020. "Government support, regulation, and risk taking in the banking sector," Journal of Banking & Finance, Elsevier, vol. 112(C).
- Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008.
"The Volatility of Realized Volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
- Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
- Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
- Jau-er Chen & Chen-Wei Hsiang, 2019. "Causal Random Forests Model Using Instrumental Variable Quantile Regression," Econometrics, MDPI, vol. 7(4), pages 1-22, December.
- Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020.
"Realized stochastic volatility models with generalized Gegenbauer long memory,"
Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
- Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Shelton Peiris & Michael McAleer, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Documentos de Trabajo del ICAE 2017-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer & Shelton Peiris, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Tinbergen Institute Discussion Papers 17-105/III, Tinbergen Institute.
- Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
- Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010.
"Long memory versus structural breaks in modeling and forecasting realized volatility,"
Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
- Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017.
"Realized stochastic volatility with general asymmetry and long memory,"
Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
- Asai, M. & Chang, C-L. & McAleer, M.J., 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Econometric Institute Research Papers TI 2017-038/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Chia-Lin Chang & Michael McAleer, 2017. "Realized Stochastic Volatility with General Asymmetry and Long Memory," Tinbergen Institute Discussion Papers 17-038/III, Tinbergen Institute.
- Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
- Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019.
"Dynamic semiparametric models for expected shortfall (and Value-at-Risk),"
Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
- Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
- Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
- Verma, Ramprasad & Ahmad, Wasim & Uddin, Gazi Salah & Bekiros, Stelios, 2019. "Analysing the systemic risk of Indian banks," Economics Letters, Elsevier, vol. 176(C), pages 103-108.
- Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
- Wang, Jiazhen & Jiang, Yuexiang & Zhu, Yanjian & Yu, Jing, 2020. "Prediction of volatility based on realized-GARCH-kernel-type models: Evidence from China and the U.S," Economic Modelling, Elsevier, vol. 91(C), pages 428-444.
- O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
- Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
- Occhino, Filippo, 2017. "Debt-overhang banking crises: Detecting and preventing systemic risk," Journal of Financial Stability, Elsevier, vol. 30(C), pages 192-208.
- Chang, Kuang-Liang, 2012. "The time-varying and asymmetric dependence between crude oil spot and futures markets: Evidence from the Mixture copula-based ARJI–GARCH model," Economic Modelling, Elsevier, vol. 29(6), pages 2298-2309.
- Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2024.
"Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?,"
Finance Research Letters, Elsevier, vol. 67(PB).
- Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2023. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," MPRA Paper 118459, University Library of Munich, Germany.
- Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
- Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
- Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
- Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
- Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
- Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018.
"Volatility forecasting across tanker freight rates: The role of oil price shocks,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
- Konstantinos Gavriilidis & Dimos S. Kambouroudis & Katerina Tsakou & Dimitris S. Tsouknidis, 2018. "Volatility forecasting across tanker freight rates: the role of oil price shocks," Working Papers 2018-27, Swansea University, School of Management.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2024. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Econometrics and Statistics, Elsevier, vol. 32(C), pages 34-56.
- Hwang, Eunju & Jeon, ChanHyeok, 2024. "Nonnegative GARCH-type models with conditional Gamma distributions and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
- Jung, R.C. & Maderitsch, R., 2014. "Structural breaks in volatility spillovers between international financial markets: Contagion or mere interdependence?," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 331-342.
- Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012.
"Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility,"
Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
- Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
- Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
- Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
- Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024.
"Integrated nested Laplace approximations for threshold stochastic volatility models,"
Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
- Zea Bermudez, Patrícia de & Rue, Havard, 2021. "Integrated nested Laplace approximations for threshold stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 31804, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
- Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022.
"A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2019. "A Moving Average Heterogeneous Autoregressive Model for Forecasting the Realized Volatility of the US Stock Market: Evidence from Over a Century of Data," Working Papers 201978, University of Pretoria, Department of Economics.
- Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017.
"Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA,"
Sustainability, MDPI, vol. 9(10), pages 1-22, October.
- Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility spillovers and causality of carbon emissions, oil and coal spot and futures for the EU and USA," Documentos de Trabajo del ICAE 2017-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Tinbergen Institute Discussion Papers 17-051/III, Tinbergen Institute.
- Chang, C-L. & McAleer, M.J. & Zuo, G., 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Econometric Institute Research Papers EI 2017-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
More about this item
Keywords
Jump-GARCH model; jump diffusion volatility; support vector quantile regression; value at risk;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8849-:d:434334. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.