IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v27y2008i1-3p1-9.html
   My bibliography  Save this article

Realized Volatility and Long Memory: An Overview

Author

Listed:
  • Esfandiar Maasoumi
  • Michael McAleer

Abstract

The challenge of modeling, estimating, testing, and forecasting financial volatility is both intellectually worthwhile and also central to the successful analysis of financial returns and optimal investment strategies. In each of the three primary areas of volatility modeling, namely, conditional (or generalized autoregressive conditional heteroskedasticity) volatility, stochastic volatility and realized volatility (RV), numerous univariate volatility models of individual financial assets and multivariate volatility models of portfolios of assets have been established. This special issue has eleven innovative articles, eight of which are focused directly on RV and three on long memory, while two are concerned with both RV and long memory.

Suggested Citation

  • Esfandiar Maasoumi & Michael McAleer, 2008. "Realized Volatility and Long Memory: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 1-9.
  • Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:1-9
    DOI: 10.1080/07474930701853459
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930701853459
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930701853459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
    2. Athanasios Tsagkanos & Konstantinos Gkillas & Christoforos Konstantatos & Christos Floros, 2021. "Does Trading Volume Drive Systemic Banks’ Stock Return Volatility? Lessons from the Greek Banking System," IJFS, MDPI, vol. 9(2), pages 1-13, April.
    3. Moawia Alghalith & Christos Floros & Konstantinos Gkillas, 2020. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility," Risks, MDPI, vol. 8(2), pages 1-15, April.
    4. Tseng-Chan Tseng & Hung-Cheng Lai & Cha-Fei Lin, 2012. "The impact of overnight returns on realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 357-364, March.
    5. Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.
    6. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    7. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    8. Yan Yan & Zhewen Liao & Xiaosong Chen, 2018. "Fixed-income securities: bibliometric review with network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1615-1640, September.
    9. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    10. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    11. Alexandra Chronopoulou & Frederi Viens, 2012. "Estimation and pricing under long-memory stochastic volatility," Annals of Finance, Springer, vol. 8(2), pages 379-403, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2017. "Testing for volatility co-movement in bivariate stochastic volatility models," Documentos de Trabajo del ICAE 2017-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    3. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    4. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    6. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2016. "Testing for a Common Volatility Process and Information Spillovers in Bivariate Financial Time Series Models," Documentos de Trabajo del ICAE 2016-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    7. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    8. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    10. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.
    11. Alin Sima, 2008. "Stylized Facts and Discrete Stochastic Volatility Models," Advances in Economic and Financial Research - DOFIN Working Paper Series 10, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    12. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
    13. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    14. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    15. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    16. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    17. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    18. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
    19. Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CARF F-Series CARF-F-189, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Juan‐Ángel Jiménez‐Martín & Michael McAleer & Teodosio Pérez‐Amaral, 2009. "The Ten Commandments For Managing Value At Risk Under The Basel Ii Accord," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 850-855, December.
    21. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.