IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v64y2019icp102-121.html
   My bibliography  Save this article

The economic sources of China's CSI 300 spot and futures volatilities before and after the 2015 stock market crisis

Author

Listed:
  • Chen, Qiang
  • Gong, Yuting

Abstract

The 2015 Chinese stock market crisis has increased focus on the factors that determine the volatility of stock spot and futures markets. In this paper, we investigate the economic sources of CSI 300 spot and futures volatilities before and after the stock market crash based on the generalized autoregressive conditional heteroskedasticity model with the mixed frequency data sampling scheme (GARCH-MIDAS). It shows that the risks of the CSI 300 Index tend to increase with higher inflation, lower economic growth, tighter credit conditions and more variant credit policies, while the risks of CSI 300 futures tend to increase with higher inflation, tighter credit conditions, more variant inflation rates and more variant credit policies. The effects of economic fundamentals are greater and more prolonged than the effects of economic uncertainty and speculative trading. Investors are advised to pay attention to the changes in price levels, economic development and credit policies when managing their portfolio risks. More importantly, as speculation has contributed little to the risks of CSI 300 futures in the post-crisis period, regulators are advised to ease trading restrictions and resume index futures trading gradually.

Suggested Citation

  • Chen, Qiang & Gong, Yuting, 2019. "The economic sources of China's CSI 300 spot and futures volatilities before and after the 2015 stock market crisis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 102-121.
  • Handle: RePEc:eee:reveco:v:64:y:2019:i:c:p:102-121
    DOI: 10.1016/j.iref.2019.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056018303666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2019.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierdzioch, Christian & Döpke, Jörg & Hartmann, Daniel, 2008. "Forecasting stock market volatility with macroeconomic variables in real time," Journal of Economics and Business, Elsevier, vol. 60(3), pages 256-276.
    2. Jian Yang & Zihui Yang & Yinggang Zhou, 2012. "Intraday price discovery and volatility transmission in stock index and stock index futures markets: Evidence from China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 99-121, February.
    3. Bohl, Martin T. & Diesteldorf, Jeanne & Siklos, Pierre L., 2015. "The effect of index futures trading on volatility: Three markets for Chinese stocks," China Economic Review, Elsevier, vol. 34(C), pages 207-224.
    4. Owain Ap Gwilym & David McMillan & Alan Speight, 1999. "The intraday relationship between volume and volatility in LIFFE futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 9(6), pages 593-604.
    5. Wang, Gang-Jin & Jiang, Zhi-Qiang & Lin, Min & Xie, Chi & Stanley, H. Eugene, 2018. "Interconnectedness and systemic risk of China's financial institutions," Emerging Markets Review, Elsevier, vol. 35(C), pages 1-18.
    6. Jianping Mei & Jose A. Scheinkman & Wei Xiong, 2009. "Speculative Trading and Stock Prices: Evidence from Chinese A-B Share Premia," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 225-255, November.
    7. Caginalp, Gunduz & DeSantis, Mark, 2017. "Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 436-452.
    8. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    9. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    10. Gao, Bin & Yang, Chunpeng, 2017. "Forecasting stock index futures returns with mixed-frequency sentiment," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 69-83.
    11. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    12. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    13. Yang, Lu & Cai, Xiao Jing & Hamori, Shigeyuki, 2018. "What determines the long-term correlation between oil prices and exchange rates?," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 140-152.
    14. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2016. "Macro-Finance Determinants of the Long-Run Stock–Bond Correlation: The DCC-MIDAS Specification," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 617-642.
    15. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    16. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    17. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2013. "Macroeconomic determinants of stock volatility and volatility premiums," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 203-220.
    18. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    19. Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
    20. Auerbach, Alan J, 1982. "The Index of Leading Indicators: "Measurement without Theory," Thirty-Five Years Later," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 589-595, November.
    21. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    22. Yeh, Yin-Hua & Lee, Tsun-Siou, 2000. "The interaction and volatility asymmetry of unexpected returns in the greater China stock markets," Global Finance Journal, Elsevier, vol. 11(1-2), pages 129-149.
    23. Christos Floros & Enrique Salvador, 2016. "Volatility, trading volume and open interest in futures markets," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 12(5), pages 629-653, October.
    24. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    25. Girardin, Eric & Liu, Zhenya, 2005. "Bank credit and seasonal anomalies in China's stock markets," China Economic Review, Elsevier, vol. 16(4), pages 465-483.
    26. Kleidon, Allan W & Whaley, Robert E, 1992. "One Market? Stocks, Futures, and Options during October 1987," Journal of Finance, American Finance Association, vol. 47(3), pages 851-877, July.
    27. Francis X. Diebold & Kamil Yılmaz, 2007. "Macroeconomic Volatility and Stock Market Volatility,World-Wide," Koç University-TUSIAD Economic Research Forum Working Papers 0711, Koc University-TUSIAD Economic Research Forum.
    28. Wang, Gang-Jin & Xie, Chi & Jiang, Zhi-Qiang & Stanley, H. Eugene, 2016. "Extreme risk spillover effects in world gold markets and the global financial crisis," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 55-77.
    29. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    30. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    31. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    32. Hou, Ai Jun, 2013. "Asymmetry effects of shocks in Chinese stock markets volatility: A generalized additive nonparametric approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 23(C), pages 12-32.
    33. Girardin, Eric & Joyeux, Roselyne, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Economic Modelling, Elsevier, vol. 34(C), pages 59-68.
    34. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    35. Beltratti, A. & Morana, C., 2006. "Breaks and persistency: macroeconomic causes of stock market volatility," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 151-177.
    36. Ghysels, Eric & Seon, Junghoon, 2005. "The Asian financial crisis: The role of derivative securities trading and foreign investors in Korea," Journal of International Money and Finance, Elsevier, vol. 24(4), pages 607-630, June.
    37. Morelli, David, 2002. "The relationship between conditional stock market volatility and conditional macroeconomic volatility: Empirical evidence based on UK data," International Review of Financial Analysis, Elsevier, vol. 11(1), pages 101-110.
    38. Qian Han & Jufang Liang, 2017. "Index Futures Trading Restrictions and Spot Market Quality: Evidence from the Recent Chinese Stock Market Crash," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(4), pages 411-428, April.
    39. Ali F. Darrat & Shafiqur Rahman, 1995. "Has futures trading activity caused stock price volatility?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(5), pages 537-557, August.
    40. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    41. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bo & Xiao, Yang, 2023. "Risk spillovers from China's and the US stock markets during high-volatility periods: Evidence from East Asianstock markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    2. Li, Guangchen & Shen, Z.Y. & Song, Malin & Wei, Weixian, 2024. "Exploring the interconnectedness of China's new energy and stock markets: A study on volatility spillovers and dynamic correlations," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 471-484.
    3. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    4. Bellavite Pellegrini, Carlo & Cincinelli, Peter & Meoli, Michele & Urga, Giovanni, 2022. "The contribution of (shadow) banks and real estate to systemic risk in China," Journal of Financial Stability, Elsevier, vol. 60(C).
    5. Si-yao Wei & Wei-xing Zhou, 2024. "The resilience of China's financial markets: With a focus on the impact of its climate policy uncertainty," Papers 2409.18422, arXiv.org.
    6. Badamvaanchig, Mungunzul & Islam, Moinul & Kakinaka, Makoto, 2021. "Pass-through of commodity price to Mongolian stock price: Symmetric or asymmetric?," Resources Policy, Elsevier, vol. 70(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang Wu & Terence Tai-Leung Chong, 2021. "Does the macroeconomy matter to market volatility? Evidence from US industries," Empirical Economics, Springer, vol. 61(6), pages 2931-2962, December.
    2. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    3. Cristina Amado & Annastiina Silvennoinen & Timo Ter¨asvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," NIPE Working Papers 07/2018, NIPE - Universidade do Minho.
    4. Bevilacqua, Mattia & Morelli, David & Tunaru, Radu, 2019. "The determinants of the model-free positive and negative volatilities," Journal of International Money and Finance, Elsevier, vol. 92(C), pages 1-24.
    5. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    6. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
    7. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    8. Jiang, Cuixia & Li, Yuqian & Xu, Qifa & Liu, Yezheng, 2021. "Measuring risk spillovers from multiple developed stock markets to China: A vine-copula-GARCH-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 386-398.
    9. Belcaid, Karim & El Ghini, Ahmed, 2019. "U.S., European, Chinese economic policy uncertainty and Moroccan stock market volatility," The Journal of Economic Asymmetries, Elsevier, vol. 20(C).
    10. Han Liu & Peng Yang & Haiyan Song & Doris Chenguang Wu, 2024. "Global and domestic economic policy uncertainties and tourism stock market: Evidence from China," Tourism Economics, , vol. 30(3), pages 567-591, May.
    11. Hartwell, Christopher A., 2018. "The impact of institutional volatility on financial volatility in transition economies," Journal of Comparative Economics, Elsevier, vol. 46(2), pages 598-615.
    12. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    13. Yu, Honghai & Fang, Libing & Sun, Wencong, 2018. "Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 931-940.
    14. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    15. You, Yu & Liu, Xiaochun, 2020. "Forecasting short-run exchange rate volatility with monetary fundamentals: A GARCH-MIDAS approach," Journal of Banking & Finance, Elsevier, vol. 116(C).
    16. Lindblad, Annika, 2017. "Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility," MPRA Paper 80266, University Library of Munich, Germany.
    17. Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2019. "On the asymmetric impact of macro–variables on volatility," Economic Modelling, Elsevier, vol. 76(C), pages 135-152.
    18. Caglayan, Mustafa Onur & Xue, Wenjun & Zhang, Liwen, 2020. "Global investigation on the country-level idiosyncratic volatility and its determinants," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 143-160.
    19. Andy Wui Wing Cheng & Iris Wing Han Yip, 2017. "China’s Macroeconomic Fundamentals on Stock Market Volatility: Evidence from Shanghai and Hong Kong," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-57, June.
    20. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023. "Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:64:y:2019:i:c:p:102-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.