IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v109y2022ics0140988322001244.html
   My bibliography  Save this article

Can the return connectedness indices from grey energy to natural gas help to forecast the natural gas returns?

Author

Listed:
  • Luo, Keyu
  • Guo, Qiang
  • Li, Xiafei

Abstract

In this paper, we construct one-way return connectedness indices and net pairwise directional connectedness (NPDC) indices from the grey energy market to the natural gas market using the dynamic connectedness framework of Antonakakis et al. (2020) and attempt to investigate their ability to forecast natural gas returns. Both the in-sample estimation results and the out-of-sample evaluation results show that most of the return connectedness indices considered in this paper have significant predictive power for natural gas returns, and at most forecasting horizons, the predictive power of the return connectedness indices from grey energy to natural gas exceeds that of the grey energy returns themselves. The out-of-sample evaluation results further show that among all the return connectedness indices considered here, the return connectedness indices from the WTI crude oil market perform better in out-of-sample forecasting. Specifically, the one-way return connectedness index from WTI crude oil to natural gas performs better in short-term return forecasting, while the NPDC indices from WTI crude oil to natural gas perform better in long-term return forecasting.

Suggested Citation

  • Luo, Keyu & Guo, Qiang & Li, Xiafei, 2022. "Can the return connectedness indices from grey energy to natural gas help to forecast the natural gas returns?," Energy Economics, Elsevier, vol. 109(C).
  • Handle: RePEc:eee:eneeco:v:109:y:2022:i:c:s0140988322001244
    DOI: 10.1016/j.eneco.2022.105947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322001244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.105947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    4. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    5. Wang, En-Ze & Lee, Chien-Chiang, 2022. "The impact of clean energy consumption on economic growth in China: Is environmental regulation a curse or a blessing?," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 39-58.
    6. Zhang, Dayong & Wang, Tiantian & Shi, Xunpeng & Liu, Jia, 2018. "Is hub-based pricing a better choice than oil indexation for natural gas? Evidence from a multiple bubble test," Energy Economics, Elsevier, vol. 76(C), pages 495-503.
    7. Kandel, Shmuel & Stambaugh, Robert F, 1996. "On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    8. Wong-Parodi, Gabrielle & Dale, Larry & Lekov, Alex, 2006. "Comparing price forecast accuracy of natural gas models and futures markets," Energy Policy, Elsevier, vol. 34(18), pages 4115-4122, December.
    9. Singh, Vipul Kumar & Kumar, Pawan & Nishant, Shreyank, 2019. "Global connectedness of MSCI energy equity indices: A system-wide network approach," Energy Economics, Elsevier, vol. 84(C).
    10. repec:ipg:wpaper:2014-569 is not listed on IDEAS
    11. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2018. "Forecasting the prices of crude oil using the predictor, economic and combined constraints," Economic Modelling, Elsevier, vol. 75(C), pages 237-245.
    12. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
    15. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    16. Chatziantoniou, Ioannis & Degiannakis, Stavros & Delis, Panagiotis & Filis, George, 2021. "Forecasting oil price volatility using spillover effects from uncertainty indices," Finance Research Letters, Elsevier, vol. 42(C).
    17. Atil, Ahmed & Lahiani, Amine & Nguyen, Duc Khuong, 2014. "Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices," Energy Policy, Elsevier, vol. 65(C), pages 567-573.
    18. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    19. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    20. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    21. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    22. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    23. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    24. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    25. Mu, Xiaoyi, 2007. "Weather, storage, and natural gas price dynamics: Fundamentals and volatility," Energy Economics, Elsevier, vol. 29(1), pages 46-63, January.
    26. Nick, Sebastian & Thoenes, Stefan, 2014. "What drives natural gas prices? — A structural VAR approach," Energy Economics, Elsevier, vol. 45(C), pages 517-527.
    27. Lv, Xiaodong & Shan, Xian, 2013. "Modeling natural gas market volatility using GARCH with different distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5685-5699.
    28. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Agricultural commodity markets and oil prices: An analysis of the dynamic return and volatility connectedness," Resources Policy, Elsevier, vol. 73(C).
    29. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    30. Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
    31. Wei, Yu & Qin, Songkun & Li, Xiafei & Zhu, Sha & Wei, Guiwu, 2019. "Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis," Finance Research Letters, Elsevier, vol. 30(C), pages 23-29.
    32. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
    33. Liu, Zhenhua & Tseng, Hui-Kuan & Wu, Jy S. & Ding, Zhihua, 2020. "Implied volatility relationships between crude oil and the U.S. stock markets: Dynamic correlation and spillover effects," Resources Policy, Elsevier, vol. 66(C).
    34. Herbert, John H, 1995. "Trading volume, maturity and natural gas futures price volatility," Energy Economics, Elsevier, vol. 17(4), pages 293-299, October.
    35. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan & Plakandaras, Vasilios, 2018. "Dynamic connectedness of uncertainty across developed economies: A time-varying approach," Economics Letters, Elsevier, vol. 166(C), pages 63-75.
    36. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Dynamic frequency relationships and volatility spillovers in natural gas, crude oil, gas oil, gasoline, and heating oil markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 73(C).
    37. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    38. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    39. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    40. Brigida, Matthew, 2014. "The switching relationship between natural gas and crude oil prices," Energy Economics, Elsevier, vol. 43(C), pages 48-55.
    41. Buchanan, W. K. & Hodges, P. & Theis, J., 2001. "Which way the natural gas price: an attempt to predict the direction of natural gas spot price movements using trader positions," Energy Economics, Elsevier, vol. 23(3), pages 279-293, May.
    42. Bahloul, Slah & Khemakhem, Imen, 2021. "Dynamic return and volatility connectedness between commodities and Islamic stock market indices," Resources Policy, Elsevier, vol. 71(C).
    43. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    44. Chen, Zhonglu & Liang, Chao & Umar, Muhammad, 2021. "Is investor sentiment stronger than VIX and uncertainty indices in predicting energy volatility?," Resources Policy, Elsevier, vol. 74(C).
    45. Feng Ma & Chao Liang & Qing Zeng & Haibo Li, 2021. "Jumps and oil futures volatility forecasting: a new insight," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 853-863, May.
    46. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    47. Liu, Lon-Mu & Lin, Maw-Wen, 1991. "Forecasting residential consumption of natural gas using monthly and quarterly time series," International Journal of Forecasting, Elsevier, vol. 7(1), pages 3-16, May.
    48. Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
    49. Li, Xiafei & Li, Bo & Wei, Guiwu & Bai, Lan & Wei, Yu & Liang, Chao, 2021. "Return connectedness among commodity and financial assets during the COVID-19 pandemic: Evidence from China and the US," Resources Policy, Elsevier, vol. 73(C).
    50. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    51. Gabauer, David & Gupta, Rangan, 2018. "On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach," Economics Letters, Elsevier, vol. 171(C), pages 63-71.
    52. Mensi, Walid & Rehman, Mobeen Ur & Hammoudeh, Shawkat & Vo, Xuan Vinh, 2021. "Spillovers between natural gas, gasoline, oil, and stock markets: Evidence from MENA countries," Resources Policy, Elsevier, vol. 71(C).
    53. Balli, Faruk & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain & de Bruin, Anne, 2019. "Spillover network of commodity uncertainties," Energy Economics, Elsevier, vol. 81(C), pages 914-927.
    54. Naeem, Muhammad Abubakr & Balli, Faruk & Shahzad, Syed Jawad Hussain & de Bruin, Anne, 2020. "Energy commodity uncertainties and the systematic risk of US industries," Energy Economics, Elsevier, vol. 85(C).
    55. Farid, Saqib & Kayani, Ghulam Mujtaba & Naeem, Muhammad Abubakr & Shahzad, Syed Jawad Hussain, 2021. "Intraday volatility transmission among precious metals, energy and stocks during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 72(C).
    56. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    57. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    58. Feng Ma & Yu Wei & Li Liu & Dengshi Huang, 2018. "Forecasting realized volatility of oil futures market: A new insight," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(4), pages 419-436, July.
    59. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    60. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    61. Lee, Chi-Chuan & Lee, Chien-Chiang & Li, Yong-Yi, 2021. "Oil price shocks, geopolitical risks, and green bond market dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    62. Özmen, Ayşe & Yılmaz, Yavuz & Weber, Gerhard-Wilhelm, 2018. "Natural gas consumption forecast with MARS and CMARS models for residential users," Energy Economics, Elsevier, vol. 70(C), pages 357-381.
    63. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2017. "The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective," Energy Economics, Elsevier, vol. 67(C), pages 98-110.
    64. Ergen, Ibrahim & Rizvanoghlu, Islam, 2016. "Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach," Energy Economics, Elsevier, vol. 56(C), pages 64-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).
    2. Soni, Rajat Kumar & Nandan, Tanuj & Sawarn, Ujjawal, 2024. "Investment modeling between energy futures and responsible investment," Research in International Business and Finance, Elsevier, vol. 70(PB).
    3. Palma, Alessia & Paltrinieri, Andrea & Goodell, John W. & Oriani, Marco Ercole, 2024. "The black box of natural gas market: Past, present, and future," International Review of Financial Analysis, Elsevier, vol. 94(C).
    4. Philips, Abiodun S., 2023. "Institutional enforcement of environmental fiscal stance and energy stock markets performance: Evaluating for returns and risk among connected markets," Energy, Elsevier, vol. 263(PE).
    5. Yadong Pei & Chiou-Jye Huang & Yamin Shen & Mingyue Wang, 2023. "A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional Network," Energies, MDPI, vol. 16(5), pages 1-15, February.
    6. Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
    2. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    3. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    4. Li, Jingpeng & Umar, Muhammad & Huo, Jiale, 2023. "The spillover effect between Chinese crude oil futures market and Chinese green energy stock market," Energy Economics, Elsevier, vol. 119(C).
    5. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2023. "Natural gas and the utility sector nexus in the U.S.: Quantile connectedness and portfolio implications," Energy Economics, Elsevier, vol. 120(C).
    6. Wang, Tiantian & Wu, Fei & Zhang, Dayong & Ji, Qiang, 2023. "Energy market reforms in China and the time-varying connectedness of domestic and international markets," Energy Economics, Elsevier, vol. 117(C).
    7. Palma, Alessia & Paltrinieri, Andrea & Goodell, John W. & Oriani, Marco Ercole, 2024. "The black box of natural gas market: Past, present, and future," International Review of Financial Analysis, Elsevier, vol. 94(C).
    8. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    9. Lee, Chien-Chiang & Zhou, Hegang & Xu, Chao & Zhang, Xiaoming, 2023. "Dynamic spillover effects among international crude oil markets from the time-frequency perspective," Resources Policy, Elsevier, vol. 80(C).
    10. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    11. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    12. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Dynamic frequency relationships and volatility spillovers in natural gas, crude oil, gas oil, gasoline, and heating oil markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 73(C).
    13. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    14. Li, Xiafei & Li, Bo & Wei, Guiwu & Bai, Lan & Wei, Yu & Liang, Chao, 2021. "Return connectedness among commodity and financial assets during the COVID-19 pandemic: Evidence from China and the US," Resources Policy, Elsevier, vol. 73(C).
    15. Umar, Zaghum & Mokni, Khaled & Escribano, Ana, 2022. "Connectedness between the COVID-19 related media coverage and Islamic equities: The role of economic policy uncertainty," Pacific-Basin Finance Journal, Elsevier, vol. 75(C).
    16. Akyildirim, Erdinc & Cepni, Oguzhan & Molnár, Peter & Uddin, Gazi Salah, 2022. "Connectedness of energy markets around the world during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 109(C).
    17. Yousaf, Imran & Jareño, Francisco & Tolentino, Marta, 2023. "Connectedness between Defi assets and equity markets during COVID-19: A sector analysis," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    18. Thobekile Qabhobho & Anokye M. Adam & Anthony Adu-Asare Idun & Emmanuel Asafo-Adjei & Ebenezer Boateng, 2023. "Exploring the Time-varying Connectedness and Contagion Effects among Exchange Rates of BRICS, Energy Commodities, and Volatilities," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 272-283, March.
    19. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    20. Umar, Zaghum & Aziz, Saqib & Tawil, Dima, 2021. "The impact of COVID-19 induced panic on the return and volatility of precious metals," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).

    More about this item

    Keywords

    Natural gas; Grey energy; Return forecast; Return connectedness index;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:109:y:2022:i:c:s0140988322001244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.