IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v48y2014icp29-41.html
   My bibliography  Save this article

A new set of improved Value-at-Risk backtests

Author

Listed:
  • Ziggel, Daniel
  • Berens, Tobias
  • Weiß, Gregor N.F.
  • Wied, Dominik

Abstract

We propose a new set of formal backtests for VaR-forecasts that significantly improve upon existing backtesting procedures. Our new test of unconditional coverage can be used for both one-sided and two-sided testing, which leads to a significantly increased power. Second, we stress the importance of testing the property of independent and identically distributed (i.i.d.) VaR-exceedances and propose a simple approach that explicitly tests for the presence of clusters in VaR-violation processes. Results from a simulation study indicate that our tests significantly outperform competing backtests in several distinct settings.

Suggested Citation

  • Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
  • Handle: RePEc:eee:jbfina:v:48:y:2014:i:c:p:29-41
    DOI: 10.1016/j.jbankfin.2014.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426614002520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2014.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    2. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    3. Christophe Hurlin & Sessi Tokpavi, 2006. "Backtesting Value at Risk Accuracy : A New Simple Test," Post-Print halshs-00257520, HAL.
    4. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
    5. Casper G. de Vries & Gennady Samorodnitsky & Bjørn N. Jorgensen & Sarma Mandira & Jon Danielsson, 2005. "Subadditivity Re–Examined: the Case for Value-at-Risk," FMG Discussion Papers dp549, Financial Markets Group.
    6. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    7. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
    8. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2006. "Equilibrium impact of value-at-risk regulation," Journal of Economic Dynamics and Control, Elsevier, vol. 30(8), pages 1277-1313, August.
    9. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    10. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    11. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    12. Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Finance, Presses universitaires de Grenoble, vol. 33(1), pages 79-112.
    13. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    16. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    17. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    18. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    19. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    20. Dominik Wied & Matthias Arnold & Nicolai Bissantz & Daniel Ziggel, 2012. "A new fluctuation test for constant variances with applications to finance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1111-1127, November.
    21. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    2. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    5. Wied, Dominik & Weiß, Gregor N.F. & Ziggel, Daniel, 2016. "Evaluating Value-at-Risk forecasts: A new set of multivariate backtests," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 121-132.
    6. Leccadito, Arturo & Boffelli, Simona & Urga, Giovanni, 2014. "Evaluating the accuracy of value-at-risk forecasts: New multilevel tests," International Journal of Forecasting, Elsevier, vol. 30(2), pages 206-216.
    7. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    8. Argyropoulos, Christos & Panopoulou, Ekaterini, 2019. "Backtesting VaR and ES under the magnifying glass," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 22-37.
    9. Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013. "The Risk Map: A new tool for validating risk models," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
    10. Zhang, Bangzheng & Wei, Yu & Yu, Jiang & Lai, Xiaodong & Peng, Zhenfeng, 2014. "Forecasting VaR and ES of stock index portfolio: A Vine copula method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 112-124.
    11. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    12. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    13. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    14. Jean-Paul Laurent & Hassan Omidi Firouzi, 2022. "Market Risk and Volatility Weighted Historical Simulation After Basel III," Working Papers hal-03679434, HAL.
    15. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    16. Thiele, Stephen, 2019. "Detecting underestimates of risk in VaR models," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 12-20.
    17. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    18. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    19. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    20. Marta Małecka, 2021. "Testing for a serial correlation in VaR failures through the exponential autoregressive conditional duration model," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 145-162, March.

    More about this item

    Keywords

    Value-at-Risk; Backtesting; Monte Carlo simulation;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:48:y:2014:i:c:p:29-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.