IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i11p2529-2539.html
   My bibliography  Save this article

Wavelet-based multi-resolution GARCH model for financial spillover effects

Author

Listed:
  • Huang, Shian-Chang

Abstract

This study proposes a wavelet-based multi-resolution BEKK-GARCH model to investigate spillover effects across financial markets. Compared with traditional multivariate GARCH analysis, the proposed model can identify or decompose cross-market spillovers on multiple resolutions. Taking two highly correlated indices, the NASDAQ (U.S.) and TWSI (Taiwan composite stock index) for analysis, the empirical results show that the NASDAQ returns strongly predict the movements of TWSI on the raw data level, but via wavelet-based multi-resolution analysis we find that the prediction power unevenly spreads over each time scale, and the spillover patterns are totally different as that revealed on the raw data level. The direction and magnitude of return and volatility spillovers significantly vary with their time scales. Considering the fact that heterogeneous groups of investors trade on different time horizons, the results of this study help investors to uncover the complex pattern of return and volatility spillovers on their own horizon, and make a good hedge on their risk.

Suggested Citation

  • Huang, Shian-Chang, 2011. "Wavelet-based multi-resolution GARCH model for financial spillover effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2529-2539.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:11:p:2529-2539
    DOI: 10.1016/j.matcom.2011.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475411001091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramsey James B. & Lampart Camille, 1998. "The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(1), pages 1-22, April.
    2. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    3. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    4. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    5. Dunne, Peter G., 1999. "Size and book-to-market factors in a multivariate GARCH-in-mean asset pricing application," International Review of Financial Analysis, Elsevier, vol. 8(1), pages 35-52.
    6. Davidson, Russell & Labys, Walter C & Lesourd, Jean-Baptiste, 1998. "Wavelet Analysis of Commodity Price Behavior," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 103-128, April.
    7. Abdul Hakim & Michael McAleer, 2010. "Modelling the interactions across international stock, bond and foreign exchange markets," Applied Economics, Taylor & Francis Journals, vol. 42(7), pages 825-850.
    8. Ramsey, James B. & Zhang, Zhifeng, 1997. "The analysis of foreign exchange data using waveform dictionaries," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 341-372, December.
    9. Ramazan Genay & Faruk Seļuk & Brandon Whitcher, 2003. "Systematic risk and timescales," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 108-116.
    10. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    11. Ramsey, James B. & Lampart, Camille, 1998. "Decomposition Of Economic Relationships By Timescale Using Wavelets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(1), pages 49-71, March.
    12. Pan, Zuohong & Wang, Xiaodi, 1998. "A Stochastic Nonlinear Regression Estimator Using Wavelets," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 89-102, April.
    13. Hiroshi Yamada, 2005. "Wavelet-based beta estimation and Japanese industrial stock prices," Applied Economics Letters, Taylor & Francis Journals, vol. 12(2), pages 85-88.
    14. Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon, 2001. "Scaling properties of foreign exchange volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(1), pages 249-266.
    15. Hahn Shik Lee, 2004. "International transmission of stock market movements: a wavelet analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 11(3), pages 197-201.
    16. Francis In & Sangbae Kim, 2006. "The Hedge Ratio and the Empirical Relationship between the Stock and Futures Markets: A New Approach Using Wavelet Analysis," The Journal of Business, University of Chicago Press, vol. 79(2), pages 799-820, March.
    17. Kim Sangbae & In Francis Haeuck, 2003. "The Relationship Between Financial Variables and Real Economic Activity: Evidence From Spectral and Wavelet Analyses," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-18, December.
    18. Esfandiar Maasoumi & Michael McAleer, 2006. "Multivariate Stochastic Volatility: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 139-144.
    19. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    20. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    21. Eun, Cheol S. & Shim, Sangdal, 1989. "International Transmission of Stock Market Movements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(2), pages 241-256, June.
    22. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(1), pages 232-261, February.
    23. Huang, Biing-Wen & Chen, Meng-Gu & Chang, Chia-Lin & McAleer, Michael, 2009. "Modelling risk in agricultural finance: Application to the poultry industry in Taiwan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1472-1487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mensi, Walid & Hkiri, Besma & Al-Yahyaee, Khamis H. & Kang, Sang Hoon, 2018. "Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 74-102.
    2. Kim Hiang Liow & Xiaoxia Zhou & Qiang Li & Yuting Huang, 2019. "Time–Scale Relationship between Securitized Real Estate and Local Stock Markets: Some Wavelet Evidence," JRFM, MDPI, vol. 12(1), pages 1-23, January.
    3. KimHiang Liow & Xiaoxia Zhou & Qiang Li & Yuting Huang, 2019. "Dynamic interdependence between the US and the securitized real estate markets of the Asian-Pacific economies," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 37(1), pages 92-117, January.
    4. Teply, Petr & Kvapilikova, Ivana, 2017. "Measuring systemic risk of the US banking sector in time-frequency domain," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 461-472.
    5. Belhassine, Olfa & Karamti, Chiraz, 2021. "Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis," Energy Economics, Elsevier, vol. 102(C).
    6. Anindya Chakrabarty & Anupam De & Gautam Bandyopadhyay, 2015. "A Wavelet-based MRA-EDCC-GARCH Methodology for the Detection of News and Volatility Spillover across Sectoral Indices—Evidence from the Indian Financial Market," Global Business Review, International Management Institute, vol. 16(1), pages 35-49, February.
    7. Chakrabarty, Anindya & De, Anupam & Gunasekaran, Angappa & Dubey, Rameshwar, 2015. "Investment horizon heterogeneity and wavelet: Overview and further research directions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 45-61.
    8. Aloui, Chaker & Hkiri, Besma & Lau, Marco Chi Keung & Yarovaya, Larisa, 2018. "Information transmission across stock indices and stock index futures: International evidence using wavelet framework," Research in International Business and Finance, Elsevier, vol. 44(C), pages 411-421.
    9. Chiranjivi, GVS & Sensarma, Rudra, 2023. "The effects of economic and financial shocks on private investment: A wavelet study of return and volatility spillovers," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Liu, Xueyong & An, Haizhong & Huang, Shupei & Wen, Shaobo, 2017. "The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 374-383.
    11. Qunwei Wang & Xingyu Dai & Dequn Zhou, 2020. "Dynamic Correlation and Risk Contagion Between “Black” Futures in China: A Multi-scale Variational Mode Decomposition Approach," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1117-1150, April.
    12. Martín-Barragán, Belén & Ramos, Sofia B. & Veiga, Helena, 2015. "Correlations between oil and stock markets: A wavelet-based approach," Economic Modelling, Elsevier, vol. 50(C), pages 212-227.
    13. Liow, Kim Hiang & Huang, Yuting & Song, Jeonseop, 2019. "Relationship between the United States housing and stock markets: Some evidence from wavelet analysis," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    14. Jasmina Ðuraškovic & Slavica Manic & Dejan Živkov, 2019. "Multiscale Volatility Transmission and Portfolio Construction Between the Baltic Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 69(2), pages 211-235, April.
    15. Zheng, Biao & Zhang, Yuquan W. & Qu, Fang & Geng, Yong & Yu, Haishan, 2022. "Do rare earths drive volatility spillover in crude oil, renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach," Energy, Elsevier, vol. 251(C).
    16. Dejan Zivkov & Suzana Balaban & Jasmina Djuraskovic, 2018. "What Multiscale Approach Can Tell About the Nexus Between Exchange Rate and Stocks in the Major Emerging Markets?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 68(5), pages 491-512, October.
    17. Xu, Qifa & Jin, Bei & Jiang, Cuixia, 2021. "Measuring systemic risk of the Chinese banking industry: A wavelet-based quantile regression approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    18. Feng, Sida & Huang, Shupei & Qi, Yabin & Liu, Xueyong & Sun, Qingru & Wen, Shaobo, 2018. "Network features of sector indexes spillover effects in China: A multi-scale view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 461-473.
    19. Yang, Lu & Hamori, Shigeyuki, 2015. "Interdependence between the bond markets of CEEC-3 and Germany: A wavelet coherence analysis," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 124-138.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masih, Mansur & Alzahrani, Mohammed & Al-Titi, Omar, 2010. "Systematic risk and time scales: New evidence from an application of wavelet approach to the emerging Gulf stock markets," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 10-18, January.
    2. Xiaojie Xu, 2018. "Causal structure among US corn futures and regional cash prices in the time and frequency domain," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2455-2480, October.
    3. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value‐At‐Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    4. Francis In & Sangbae Kim, 2012. "An Introduction to Wavelet Theory in Finance:A Wavelet Multiscale Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8431, October.
    5. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    6. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    7. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Manabu Asai & Michael McAleer, 2016. "Asymptotic Theory for Extended Asymmetric Multivariate GARCH Processes," Documentos de Trabajo del ICAE 2016-14, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    9. Atilla Cifter & Alper Ozun, 2008. "Multiscale Systematic Risk: an Application on the ISE-30," Istanbul Stock Exchange Review, Research and Business Development Department, Borsa Istanbul, vol. 10(38), pages 1-24.
    10. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CIRJE F-Series CIRJE-F-638, CIRJE, Faculty of Economics, University of Tokyo.
    11. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    12. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    13. Hakim, M.S. & McAleer, M.J., 2009. "Dynamic Conditional Correlations in International Stock, Bond and Foreign Exchange Markets: Emerging Markets Evidence," Econometric Institute Research Papers EI 2009-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Xiaojie Xu, 2018. "Intraday price information flows between the CSI300 and futures market: an application of wavelet analysis," Empirical Economics, Springer, vol. 54(3), pages 1267-1295, May.
    15. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Kim Sangbae & In Francis Haeuck, 2003. "The Relationship Between Financial Variables and Real Economic Activity: Evidence From Spectral and Wavelet Analyses," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-18, December.
    17. Kim, Sangbae & In, Francis, 2007. "On the relationship between changes in stock prices and bond yields in the G7 countries: Wavelet analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 167-179, April.
    18. Abdul Hakim & Michael McAleer, 2009. "VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," CIRJE F-Series CIRJE-F-676, CIRJE, Faculty of Economics, University of Tokyo.
    19. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    20. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:11:p:2529-2539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.