IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i3p1381-1390.html
   My bibliography  Save this item

The role of district heating in future renewable energy systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Zethraeus, Björn, 2014. "Towards a flexible energy system – A case study for Inland Norway," Applied Energy, Elsevier, vol. 130(C), pages 41-50.
  2. Popa, Cezar & Pentiuc, Radu, 2012. "Analysis of a new induction thermal converter for heating," Energy, Elsevier, vol. 42(1), pages 81-93.
  3. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
  4. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
  5. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
  6. Shaffer, Brendan & Tarroja, Brian & Samuelsen, Scott, 2015. "Dispatch of fuel cells as Transmission Integrated Grid Energy Resources to support renewables and reduce emissions," Applied Energy, Elsevier, vol. 148(C), pages 178-186.
  7. Guelpa, Elisa & Deputato, Stefania & Verda, Vittorio, 2018. "Thermal request optimization in district heating networks using a clustering approach," Applied Energy, Elsevier, vol. 228(C), pages 608-617.
  8. Xydis, G., 2012. "Development of an integrated methodology for the energy needs of a major urban city: The case study of Athens, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6705-6716.
  9. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
  10. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimization framework for distributed energy systems with integrated electrical grid constraints," Applied Energy, Elsevier, vol. 171(C), pages 296-313.
  11. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
  12. Keçebaş, Ali & Alkan, Mehmet Ali & Yabanova, İsmail & Yumurtacı, Mehmet, 2013. "Energetic and economic evaluations of geothermal district heating systems by using ANN," Energy Policy, Elsevier, vol. 56(C), pages 558-567.
  13. Brange, Lisa & Englund, Jessica & Lauenburg, Patrick, 2016. "Prosumers in district heating networks – A Swedish case study," Applied Energy, Elsevier, vol. 164(C), pages 492-500.
  14. Pérez-Uresti, Salvador I. & Martín, Mariano & Jiménez-Gutiérrez, Arturo, 2019. "Estimation of renewable-based steam costs," Applied Energy, Elsevier, vol. 250(C), pages 1120-1131.
  15. Romagnoli, Francesco & Barisa, Aiga & Dzene, Ilze & Blumberga, Andra & Blumberga, Dagnija, 2014. "Implementation of different policy strategies promoting the use of wood fuel in the Latvian district heating system: Impact evaluation through a system dynamic model," Energy, Elsevier, vol. 76(C), pages 210-222.
  16. Yang, Libing & Entchev, Evgueniy & Rosato, Antonio & Sibilio, Sergio, 2017. "Smart thermal grid with integration of distributed and centralized solar energy systems," Energy, Elsevier, vol. 122(C), pages 471-481.
  17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  18. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
  19. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
  20. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
  21. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
  22. Hakan İbrahim Tol & Svend Svendsen, 2013. "The Exergetic, Environmental and Economic Effect of the Hydrostatic Design Static Pressure Level on the Pipe Dimensions of Low-Energy District Heating Networks," Challenges, MDPI, vol. 4(1), pages 1-16, January.
  23. Mitterrutzner, Benjamin & Callegher, Claudio Zandonella & Fraboni, Riccardo & Wilczynski, Eric & Pezzutto, Simon, 2023. "Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries," Energy, Elsevier, vol. 284(C).
  24. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
  25. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
  26. Zhihua Ge & Fuxiang Zhang & Shimeng Sun & Jie He & Xiaoze Du, 2018. "Energy Analysis of Cascade Heating with High Back-Pressure Large-Scale Steam Turbine," Energies, MDPI, vol. 11(1), pages 1-15, January.
  27. Mezősi, András & Beöthy, Ákos & Kácsor, Enikő & Törőcsik, Ágnes, 2016. "A magyarországi távhő-szabályozás modellezése. A megújuló energiára alapozott hőtermelés [Modelling policy options in the district heating sector, with a focus on renewable consumption]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1149-1176.
  28. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
  29. Pillai, Jayakrishnan R. & Heussen, Kai & Østergaard, Poul Alberg, 2011. "Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios," Energy, Elsevier, vol. 36(5), pages 3233-3243.
  30. George Xydis, 2015. "Wind Energy Integration through District Heating. A Wind Resource Based Approach," Resources, MDPI, vol. 4(1), pages 1-18, March.
  31. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
  32. Jalilinasrabady, Saeid & Palsson, Halldor & Saevarsdottir, Gudrun & Itoi, Ryuichi & Valdimarsson, Pall, 2013. "Experimental and CFD simulation of heat efficiency improvement in geothermal spas," Energy, Elsevier, vol. 56(C), pages 124-134.
  33. Borna Doračić & Tomislav Novosel & Tomislav Pukšec & Neven Duić, 2018. "Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat," Energies, MDPI, vol. 11(3), pages 1-14, March.
  34. Fritz, Markus & Werner, Dorian, 2022. "Industrial excess heat and residential heating: Potentials and costs based on different heat transport technologies," Working Papers "Sustainability and Innovation" S11/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
  35. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
  36. Aste, Niccolò & Caputo, Paola & Del Pero, Claudio & Ferla, Giulio & Huerto-Cardenas, Harold Enrique & Leonforte, Fabrizio & Miglioli, Alessandro, 2020. "A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system," Energy, Elsevier, vol. 206(C).
  37. Qadrdan, Meysam & Fazeli, Reza & Jenkins, Nick & Strbac, Goran & Sansom, Robert, 2019. "Gas and electricity supply implications of decarbonising heat sector in GB," Energy, Elsevier, vol. 169(C), pages 50-60.
  38. Gabillet, Pauline, 2015. "Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district," Energy Policy, Elsevier, vol. 78(C), pages 189-197.
  39. Ming Hu, 2019. "Cost-Effective Options for the Renovation of an Existing Education Building toward the Nearly Net-Zero Energy Goal—Life-Cycle Cost Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
  40. Wei, Wu & Skye, Harrison M., 2021. "Residential net-zero energy buildings: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  41. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
  42. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
  43. Pirouti, Marouf & Bagdanavicius, Audrius & Ekanayake, Janaka & Wu, Jianzhong & Jenkins, Nick, 2013. "Energy consumption and economic analyses of a district heating network," Energy, Elsevier, vol. 57(C), pages 149-159.
  44. Morandin, Matteo & Hackl, Roman & Harvey, Simon, 2014. "Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster," Energy, Elsevier, vol. 65(C), pages 209-220.
  45. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
  46. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
  47. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
  48. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  49. Li, Dayao & He, Jiang & Li, Lin, 2016. "A review of renewable energy applications in buildings in the hot-summer and warm-winter region of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 327-336.
  50. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
  51. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
  52. Ferla, G. & Caputo, P., 2022. "Biomass district heating system in Italy: A comprehensive model-based method for the assessment of energy, economic and environmental performance," Energy, Elsevier, vol. 244(PB).
  53. Verda, Vittorio & Caccin, Marco & Kona, Albana, 2016. "Thermoeconomic cost assessment in future district heating networks," Energy, Elsevier, vol. 117(P2), pages 485-491.
  54. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
  55. Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
  56. Davide Borelli & Francesco Devia & Margherita Marré Brunenghi & Corrado Schenone & Alessandro Spoladore, 2015. "Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
  57. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
  58. Rakesh Sinha & Birgitte Bak-Jensen & Jayakrishnan Radhakrishna Pillai, 2019. "Autonomous Controller for Flexible Operation of Heat Pumps in Low-Voltage Distribution Network," Energies, MDPI, vol. 12(8), pages 1-19, April.
  59. Harrestrup, M. & Svendsen, S., 2014. "Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark," Energy Policy, Elsevier, vol. 68(C), pages 294-305.
  60. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
  61. Fang, Yujuan & Chen, Laijun & Mei, Shengwei & Wei, Wei & Huang, Shaowei & Liu, Feng, 2019. "Coal or electricity? An evolutionary game approach to investigate fuel choices of urban heat supply systems," Energy, Elsevier, vol. 181(C), pages 107-122.
  62. Basrawi, Firdaus & Yamada, Takanobu & Obara, Shin’ya, 2014. "Economic and environmental based operation strategies of a hybrid photovoltaic–microgas turbine trigeneration system," Applied Energy, Elsevier, vol. 121(C), pages 174-183.
  63. Wilson, I.A. Grant & Rennie, Anthony J.R. & Ding, Yulong & Eames, Philip C. & Hall, Peter J. & Kelly, Nicolas J., 2013. "Historical daily gas and electrical energy flows through Great Britain's transmission networks and the decarbonisation of domestic heat," Energy Policy, Elsevier, vol. 61(C), pages 301-305.
  64. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  65. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
  66. Maurer, Jona & Tschuch, Nicolai & Krebs, Stefan & Bhattacharya, Kankar & Cañizares, Claudio & Hohmann, Sören, 2023. "Toward transactive control of coupled electric power and district heating networks," Applied Energy, Elsevier, vol. 332(C).
  67. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
  68. Xu, Ziqiang & Li, Cheng & Mu, Lianbo & Wang, Suilin & Lu, Junhui & Lan, Yuncheng, 2024. "Leakage detection method of underground heating pipeline based on improved wavelet threshold function," Energy, Elsevier, vol. 295(C).
  69. Guelpa, Elisa & Marincioni, Ludovica & Verda, Vittorio, 2019. "Towards 4th generation district heating: Prediction of building thermal load for optimal management," Energy, Elsevier, vol. 171(C), pages 510-522.
  70. Mazaher Haji Bashi & Gholamreza Yousefi & Claus Leth Bak & Jayakrishnan Radhakrishna Pillai, 2016. "Long Term Expected Revenue of Wind Farms Considering the Bidding Admission Uncertainty," Energies, MDPI, vol. 9(11), pages 1-17, November.
  71. Popovski, Eftim & Aydemir, Ali & Fleiter, Tobias & Bellstädt, Daniel & Büchele, Richard & Steinbach, Jan, 2019. "The role and costs of large-scale heat pumps in decarbonising existing district heating networks – A case study for the city of Herten in Germany," Energy, Elsevier, vol. 180(C), pages 918-933.
  72. Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
  73. Kveselis, Vaclovas & Dzenajavičienė, Eugenija Farida & Masaitis, Sigitas, 2017. "Analysis of energy development sustainability: The example of the lithuanian district heating sector," Energy Policy, Elsevier, vol. 100(C), pages 227-236.
  74. Čulig-Tokić, Dario & Krajačić, Goran & Doračić, Borna & Mathiesen, Brian Vad & Krklec, Robert & Larsen, Jesper Møller, 2015. "Comparative analysis of the district heating systems of two towns in Croatia and Denmark," Energy, Elsevier, vol. 92(P3), pages 435-443.
  75. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
  76. Herbes, Carsten & Brummer, Vasco & Rognli, Judith & Blazejewski, Susanne & Gericke, Naomi, 2017. "Responding to policy change: New business models for renewable energy cooperatives – Barriers perceived by cooperatives’ members," Energy Policy, Elsevier, vol. 109(C), pages 82-95.
  77. Sanaei, Sayyed Mohammad & Nakata, Toshihiko, 2012. "Optimum design of district heating: Application of a novel methodology for improved design of community scale integrated energy systems," Energy, Elsevier, vol. 38(1), pages 190-204.
  78. Melchiorre Casisi & Stefano Costanzo & Piero Pinamonti & Mauro Reini, 2018. "Two-Level Evolutionary Multi-objective Optimization of a District Heating System with Distributed Cogeneration," Energies, MDPI, vol. 12(1), pages 1-23, December.
  79. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
  80. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
  81. Fang, Tingting & Lahdelma, Risto, 2015. "Genetic optimization of multi-plant heat production in district heating networks," Applied Energy, Elsevier, vol. 159(C), pages 610-619.
  82. Brogioli, Doriano & La Mantia, Fabio & Yip, Ngai Yin, 2019. "Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies," Renewable Energy, Elsevier, vol. 133(C), pages 1034-1045.
  83. Guelpa, Elisa, 2020. "Impact of network modelling in the analysis of district heating systems," Energy, Elsevier, vol. 213(C).
  84. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
  85. Peter Andreasen, Kristian & Sovacool, Benjamin K., 2014. "Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 891-897.
  86. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
  87. Ramsebner, J. & Haas, R. & Auer, H. & Ajanovic, A. & Gawlik, W. & Maier, C. & Nemec-Begluk, S. & Nacht, T. & Puchegger, M., 2021. "From single to multi-energy and hybrid grids: Historic growth and future vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  88. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
  89. Stef Jacobs & Margot De Pauw & Senne Van Minnebruggen & Sara Ghane & Thomas Huybrechts & Peter Hellinckx & Ivan Verhaert, 2023. "Grouped Charging of Decentralised Storage to Efficiently Control Collective Heating Systems: Limitations and Opportunities," Energies, MDPI, vol. 16(8), pages 1-28, April.
  90. Hansen, C.H. & Gudmundsson, O. & Detlefsen, N., 2019. "Cost efficiency of district heating for low energy buildings of the future," Energy, Elsevier, vol. 177(C), pages 77-86.
  91. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
  92. Gou, Xing & Chen, Qun & Hu, Kang & Ma, Huan & Chen, Lei & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2018. "Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems," Energy, Elsevier, vol. 160(C), pages 763-773.
  93. Petrović, Stefan & Bühler, Fabian & Radoman, Uroš & McKenna, Russell, 2022. "Power transformers as excess heat sources – a case study for Denmark," Energy, Elsevier, vol. 239(PE).
  94. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
  95. Wang, Zhaohua & Li, Jingyun & Wang, Bo & Hui, Ng Szu & Lu, Bin & Wang, Can & Xu, Shuling & Zhou, Zixuan & Zhang, Bin & Zheng, Yufeng, 2024. "The decarbonization pathway of power system by high-resolution model under different policy scenarios in China," Applied Energy, Elsevier, vol. 355(C).
  96. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
  97. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
  98. Abolfazl Rezaei & Bahador Samadzadegan & Hadise Rasoulian & Saeed Ranjbar & Soroush Samareh Abolhassani & Azin Sanei & Ursula Eicker, 2021. "A New Modeling Approach for Low-Carbon District Energy System Planning," Energies, MDPI, vol. 14(5), pages 1-22, March.
  99. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
  100. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
  101. Silje Smitt & Ángel Pardiñas & Armin Hafner, 2021. "Evaluation of Integrated Concepts with CO 2 for Heating, Cooling and Hot Water Production," Energies, MDPI, vol. 14(14), pages 1-28, July.
  102. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
  103. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
  104. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
  105. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
  106. Zhang, Yichi & Xia, Jianjun & Fang, Hao & Zuo, Hetao & Jiang, Yi, 2019. "Roadmap towards clean heating in 2035: Case study of inner Mongolia, China," Energy, Elsevier, vol. 189(C).
  107. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
  108. Stefan N. Petrović & Oleksandr Diachuk & Roman Podolets & Andrii Semeniuk & Fabian Bühler & Rune Grandal & Mourad Boucenna & Olexandr Balyk, 2021. "Exploring the Long-Term Development of the Ukrainian Energy System," Energies, MDPI, vol. 14(22), pages 1-20, November.
  109. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
  110. Haghi, Ehsan & Qadrdan, Meysam & Wu, Jianzhong & Jenkins, Nick & Fowler, Michael & Raahemifar, Kaamran, 2020. "An iterative approach for optimal decarbonization of electricity and heat supply systems in the Great Britain," Energy, Elsevier, vol. 201(C).
  111. Thomas Krikser & Adriano Profeta & Sebastian Grimm & Heiko Huther, 2020. "Willingness-to-Pay for District Heating from Renewables of Private Households in Germany," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
  112. Kaabinejadian, Amirreza & Maghsoudi, Peyman & Homayounpour, Mohammad Mehdi & Sadeghi, Sadegh & Bidabadi, Mehdi & Xu, Fei, 2020. "Mathematical modeling of multi-region premixed combustion of moist bamboo particles," Renewable Energy, Elsevier, vol. 162(C), pages 1618-1628.
  113. Premrov, Miroslav & Žegarac Leskovar, Vesna & Mihalič, Klara, 2016. "Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions," Energy, Elsevier, vol. 108(C), pages 201-211.
  114. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
  115. Quiggin, Daniel & Buswell, Richard, 2016. "The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios," Energy, Elsevier, vol. 98(C), pages 253-270.
  116. Brandoni, Caterina & Polonara, Fabio, 2012. "The role of municipal energy planning in the regional energy-planning process," Energy, Elsevier, vol. 48(1), pages 323-338.
  117. Manrique Delgado, Benjamin & Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2017. "Thermoeconomic analysis of heat and electricity prosumers in residential zero-energy buildings in Finland," Energy, Elsevier, vol. 130(C), pages 544-559.
  118. Li, Yan & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2011. "A new type of district heating system based on distributed absorption heat pumps," Energy, Elsevier, vol. 36(7), pages 4570-4576.
  119. Guelpa, Elisa & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Thermo-fluid dynamic model of large district heating networks for the analysis of primary energy savings," Energy, Elsevier, vol. 184(C), pages 34-44.
  120. Caputo, Paola & Ferla, Giulio & Ferrari, Simone, 2019. "Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy," Energy, Elsevier, vol. 174(C), pages 1210-1218.
  121. Nord, Natasa & Løve Nielsen, Elise Kristine & Kauko, Hanne & Tereshchenko, Tymofii, 2018. "Challenges and potentials for low-temperature district heating implementation in Norway," Energy, Elsevier, vol. 151(C), pages 889-902.
  122. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
  123. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
  124. Tissen, Carolin & Menberg, Kathrin & Benz, Susanne A. & Bayer, Peter & Steiner, Cornelia & Götzl, Gregor & Blum, Philipp, 2021. "Identifying key locations for shallow geothermal use in Vienna," Renewable Energy, Elsevier, vol. 167(C), pages 1-19.
  125. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
  126. Noorollahi, Younes & Golshanfard, Aminabbas & Ansaripour, Shiva & Khaledi, Arian & Shadi, Mehdi, 2021. "Solar energy for sustainable heating and cooling energy system planning in arid climates," Energy, Elsevier, vol. 218(C).
  127. Lowe, Robert, 2011. "Combined heat and power considered as a virtual steam cycle heat pump," Energy Policy, Elsevier, vol. 39(9), pages 5528-5534, September.
  128. Thollander, P. & Svensson, I.L. & Trygg, L., 2010. "Analyzing variables for district heating collaborations between energy utilities and industries," Energy, Elsevier, vol. 35(9), pages 3649-3656.
  129. Dobos, László & Abonyi, János, 2011. "Controller tuning of district heating networks using experiment design techniques," Energy, Elsevier, vol. 36(8), pages 4633-4639.
  130. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
  131. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
  132. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
  133. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
  134. Nils Loose & Christian Thommessen & Jan Mehlich & Christian Derksen & Stefan Eicker, 2020. "Unified Energy Agents for Combined District Heating and Electrical Network Simulation," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
  135. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
  136. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
  137. Knoblauch, Theresa A.K. & Trutnevyte, Evelina, 2018. "Siting enhanced geothermal systems (EGS): Heat benefits versus induced seismicity risks from an investor and societal perspective," Energy, Elsevier, vol. 164(C), pages 1311-1325.
  138. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
  139. Amelia DIACONU & Maria-Loredana POPESCU & Sorin BURLACU & Ovidiu Cristian Andrei BUZOIANU, 2019. "Strategic Options For The Development Of Renewable Energy In The Context Of Globalization," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 1022-1029, November.
  140. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  141. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
  142. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
  143. Farnoosh, Arash & Lantz, Frederic & Percebois, Jacques, 2014. "Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia," Energy, Elsevier, vol. 69(C), pages 299-308.
  144. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
  145. Serafeim Moustakidis & Ioannis Meintanis & George Halikias & Nicos Karcanias, 2019. "An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results," Resources, MDPI, vol. 8(1), pages 1-15, January.
  146. Kaliatka, A. & Valinčius, M., 2012. "Modeling of pipe break accident in a district heating system using RELAP5 computer code," Energy, Elsevier, vol. 44(1), pages 813-819.
  147. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
  148. Lyons, Ben & O’Dwyer, Edward & Shah, Nilay, 2020. "Model reduction for Model Predictive Control of district and communal heating systems within cooperative energy systems," Energy, Elsevier, vol. 197(C).
  149. Rinne, S. & Syri, S., 2013. "Heat pumps versus combined heat and power production as CO2 reduction measures in Finland," Energy, Elsevier, vol. 57(C), pages 308-318.
  150. Ambrose, Aimee & Eadson, Will & Pinder, James, 2016. "The role of actor-networks in the early stage mobilisation of low carbon heat networks," Energy Policy, Elsevier, vol. 96(C), pages 144-152.
  151. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
  152. Chertkov, Michael & Novitsky, Nikolai N., 2019. "Thermal Transients in District Heating Systems," Energy, Elsevier, vol. 184(C), pages 22-33.
  153. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
  154. Protić, Milan & Shamshirband, Shahaboddin & Petković, Dalibor & Abbasi, Almas & Mat Kiah, Miss Laiha & Unar, Jawed Akhtar & Živković, Ljiljana & Raos, Miomir, 2015. "Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm," Energy, Elsevier, vol. 87(C), pages 343-351.
  155. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  156. Fernqvist, Niklas & Broberg, Sarah & Torén, Johan & Svensson, Inger-Lise, 2023. "District heating as a flexibility service: Challenges in sector coupling for increased solar and wind power production in Sweden," Energy Policy, Elsevier, vol. 172(C).
  157. Brattebø, Helge & Reenaas, Marte, 2012. "Comparing CO2 and NOX emissions from a district heating system with mass-burn waste incineration versus likely alternative solutions – City of Trondheim, 1986–2009," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 147-158.
  158. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2020. "Heat and electricity market coordination: A scalable complementarity approach," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1107-1123.
  159. Li, Hongwei & Svendsen, Svend, 2012. "Energy and exergy analysis of low temperature district heating network," Energy, Elsevier, vol. 45(1), pages 237-246.
  160. Henrik Schwaeppe & Luis Böttcher & Klemens Schumann & Lukas Hein & Philipp Hälsig & Simon Thams & Paula Baquero Lozano & Albert Moser, 2022. "Analyzing Intersectoral Benefits of District Heating in an Integrated Generation and Transmission Expansion Planning Model," Energies, MDPI, vol. 15(7), pages 1-31, March.
  161. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
  162. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
  163. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
  164. Roman Jurowetzki, 2015. "Unpacking Big Systems - Natural Language Processing meets Network Analysis. A Study of Smart Grid Development in Denmark," SPRU Working Paper Series 2015-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
  165. Katarzyna Ratajczak & Edward Szczechowiak, 2020. "The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for the Ventilation System of an Indoor Swimming Pool Facility," Energies, MDPI, vol. 13(24), pages 1-22, December.
  166. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
  167. Guelpa, Elisa & Marincioni, Ludovica & Capone, Martina & Deputato, Stefania & Verda, Vittorio, 2019. "Thermal load prediction in district heating systems," Energy, Elsevier, vol. 176(C), pages 693-703.
  168. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
  169. Pedrazzi, Simone & Zini, Gabriele & Tartarini, Paolo, 2012. "Modelling and simulation of a wind-hydrogen CHP system with metal hydride storage," Renewable Energy, Elsevier, vol. 46(C), pages 14-22.
  170. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
  171. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
  172. Aoun, Nadine & Bavière, Roland & Vallée, Mathieu & Aurousseau, Antoine & Sandou, Guillaume, 2019. "Modelling and flexible predictive control of buildings space-heating demand in district heating systems," Energy, Elsevier, vol. 188(C).
  173. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
  174. Wang, Chendong & Yuan, Jianjuan & Zhang, Ji & Deng, Na & Zhou, Zhihua & Gao, Feng, 2020. "Multi-criteria comprehensive study on predictive algorithm of heating energy consumption of district heating station based on timeseries processing," Energy, Elsevier, vol. 202(C).
  175. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
  176. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
  177. Gils, Hans Christian & Cofala, Janusz & Wagner, Fabian & Schöpp, Wolfgang, 2013. "GIS-based assessment of the district heating potential in the USA," Energy, Elsevier, vol. 58(C), pages 318-329.
  178. Aleksandra Jadach-Sepioło & Maciej Zathey, 2021. "Alternative between Revitalisation of City Centres and the Rising Costs of Extensive Land Use from a Polish Perspective," Land, MDPI, vol. 10(5), pages 1-31, May.
  179. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
  180. Jalil-Vega, Francisca & García Kerdan, Iván & Hawkes, Adam D., 2020. "Spatially-resolved urban energy systems model to study decarbonisation pathways for energy services in cities," Applied Energy, Elsevier, vol. 262(C).
  181. Levihn, Fabian, 2014. "CO2 emissions accounting: Whether, how, and when different allocation methods should be used," Energy, Elsevier, vol. 68(C), pages 811-818.
  182. Johannes Idsø & Torbjørn Årethun, 2017. "Water-Thermal Energy Production System: A Case Study from Norway," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
  183. Johansen, Katinka & Werner, Sven, 2022. "Something is sustainable in the state of Denmark: A review of the Danish district heating sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  184. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
  185. Assefa Hagos, Dejene & Gebremedhin, Alemayehu & Folsland Bolkesjø, Torjus, 2015. "Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway," Energy Policy, Elsevier, vol. 85(C), pages 386-396.
  186. Danica Maljkovic, 2019. "Modelling Influential Factors of Consumption in Buildings Connected to District Heating Systems," Energies, MDPI, vol. 12(4), pages 1-21, February.
  187. Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
  188. Ana M. Marina Domingo & Javier M. Rey-Hernández & Julio F. San José Alonso & Raquel Mata Crespo & Francisco J. Rey Martínez, 2018. "Energy Efficiency Analysis Carried Out by Installing District Heating on a University Campus. A Case Study in Spain," Energies, MDPI, vol. 11(10), pages 1-20, October.
  189. Pakere, Ieva & Blumberga, Dagnija, 2020. "Solar power or solar heat: What will upraise the efficiency of district heating? Multi-criteria analyses approach," Energy, Elsevier, vol. 198(C).
  190. Colella, Francesco & Sciacovelli, Adriano & Verda, Vittorio, 2012. "Numerical analysis of a medium scale latent energy storage unit for district heating systems," Energy, Elsevier, vol. 45(1), pages 397-406.
  191. Rees, M.T. & Wu, J. & Jenkins, N. & Abeysekera, M., 2014. "Carbon constrained design of energy infrastructure for new build schemes," Applied Energy, Elsevier, vol. 113(C), pages 1220-1234.
  192. Jalil-Vega, F. & Hawkes, A.D., 2018. "Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs," Applied Energy, Elsevier, vol. 210(C), pages 1051-1072.
  193. Waite, Michael & Modi, Vijay, 2014. "Potential for increased wind-generated electricity utilization using heat pumps in urban areas," Applied Energy, Elsevier, vol. 135(C), pages 634-642.
  194. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
  195. Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
  196. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
  197. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
  198. Zhang, Lipeng & Xia, Jianjun & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Li, Hongwei & Svendsen, Svend, 2016. "Technical, economic and environmental investigation of using district heating to prepare domestic hot water in Chinese multi-storey buildings," Energy, Elsevier, vol. 116(P1), pages 281-292.
  199. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
  200. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
  201. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
  202. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
  203. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
  204. Zygmunt Kowalski & Agnieszka Makara, 2022. "Sustainable Systems for the Production of District Heating Using Meat-Bone Meal as Biofuel: A Polish Case Study," Energies, MDPI, vol. 15(10), pages 1-15, May.
  205. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
  206. Ozoliņa, Signe Allena & Pakere, Ieva & Jaunzems, Dzintars & Blumberga, Andra & Grāvelsiņš, Armands & Dubrovskis, Dagnis & Daģis, Salvis, 2022. "Can energy sector reach carbon neutrality with biomass limitations?," Energy, Elsevier, vol. 249(C).
  207. Dénarié, A. & Muscherà, M. & Calderoni, M. & Motta, M., 2019. "Industrial excess heat recovery in district heating: Data assessment methodology and application to a real case study in Milano, Italy," Energy, Elsevier, vol. 166(C), pages 170-182.
  208. Zhong, Wei & Feng, Hongcui & Wang, Xuguang & Wu, Dingfei & Xue, Minghua & Wang, Jian, 2015. "Online hydraulic calculation and operation optimization of industrial steam heating networks considering heat dissipation in pipes," Energy, Elsevier, vol. 87(C), pages 566-577.
  209. Chittum, Anna & Østergaard, Poul Alberg, 2014. "How Danish communal heat planning empowers municipalities and benefits individual consumers," Energy Policy, Elsevier, vol. 74(C), pages 465-474.
  210. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
  211. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
  212. Brand, Lisa & Calvén, Alexandra & Englund, Jessica & Landersjö, Henrik & Lauenburg, Patrick, 2014. "Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks," Applied Energy, Elsevier, vol. 129(C), pages 39-48.
  213. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
  214. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
  215. Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
  216. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
  217. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
  218. Sovacool, Benjamin K., 2013. "Energy policymaking in Denmark: Implications for global energy security and sustainability," Energy Policy, Elsevier, vol. 61(C), pages 829-839.
  219. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  220. Fabian Ochs & Mara Magni & Georgios Dermentzis, 2022. "Integration of Heat Pumps in Buildings and District Heating Systems—Evaluation on a Building and Energy System Level," Energies, MDPI, vol. 15(11), pages 1-33, May.
  221. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
  222. Meha, Drilon & Pfeifer, Antun & Duić, Neven & Lund, Henrik, 2020. "Increasing the integration of variable renewable energy in coal-based energy system using power to heat technologies: The case of Kosovo," Energy, Elsevier, vol. 212(C).
  223. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
  224. Robertson, Elizabeth & O'Grady, Áine & Barton, John & Galloway, Stuart & Emmanuel-Yusuf, Damiete & Leach, Matthew & Hammond, Geoff & Thomson, Murray & Foxon, Tim, 2017. "Reconciling qualitative storylines and quantitative descriptions: An iterative approach," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 293-306.
  225. Pardo-Bosch, Francesc & Blanco, Ana & Mendoza, Nora & Libreros, Bibiana & Tejedor, Blanca & Pujadas, Pablo, 2023. "Sustainable deployment of energy efficient district heating: city business model," Energy Policy, Elsevier, vol. 181(C).
  226. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
  227. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
  228. Marco Ravina & Costanza Gamberini & Alessandro Casasso & Deborah Panepinto, 2020. "Environmental and Health Impacts of Domestic Hot Water (DHW) Boilers in Urban Areas: A Case Study from Turin, NW Italy," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
  229. Huang, Shaojun & Tang, Weichu & Wu, Qiuwei & Li, Canbing, 2019. "Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming," Energy, Elsevier, vol. 179(C), pages 464-474.
  230. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
  231. Buonocore, Elvira & Franzese, Pier Paolo & Ulgiati, Sergio, 2012. "Assessing the environmental performance and sustainability of bioenergy production in Sweden: A life cycle assessment perspective," Energy, Elsevier, vol. 37(1), pages 69-78.
  232. Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
  233. Wolisz, Henryk & Schütz, Thomas & Blanke, Tobias & Hagenkamp, Markus & Kohrn, Markus & Wesseling, Mark & Müller, Dirk, 2017. "Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets," Energy, Elsevier, vol. 137(C), pages 715-728.
  234. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
  235. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
  236. Brand, Marek & Svendsen, Svend, 2013. "Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment," Energy, Elsevier, vol. 62(C), pages 311-319.
  237. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
  238. Richter, Joseph P. & Weisberger, Joshua M. & Mollendorf, Joseph C. & DesJardin, Paul E., 2017. "Emissions from a domestic two-stage wood-fired hydronic heater: Effects of non-homogeneous fuel decomposition," Renewable Energy, Elsevier, vol. 112(C), pages 187-196.
  239. Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
  240. Blarke, Morten B. & Dotzauer, Erik, 2011. "Intermittency-friendly and high-efficiency cogeneration: Operational optimisation of cogeneration with compression heat pump, flue gas heat recovery, and intermediate cold storage," Energy, Elsevier, vol. 36(12), pages 6867-6878.
  241. Su, Lingqi & Nie, Ting & On Ho, Chi & Yang, Zheng & Calvez, Philippe & Jain, Rishee K. & Schwegler, Ben, 2022. "Optimizing pipe network design and central plant positioning of district heating and cooling System: A Graph-Based Multi-Objective genetic algorithm approach," Applied Energy, Elsevier, vol. 325(C).
  242. Jing Zhao & Yu Shan, 2019. "An Influencing Parameters Analysis of District Heating Network Time Delays Based on the CFD Method," Energies, MDPI, vol. 12(7), pages 1-19, April.
  243. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
  244. Başoğul, Yusuf & Keçebaş, Ali, 2011. "Economic and environmental impacts of insulation in district heating pipelines," Energy, Elsevier, vol. 36(10), pages 6156-6164.
  245. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  246. Lončar, D. & Ridjan, I., 2012. "Medium term development prospects of cogeneration district heating systems in transition country – Croatian case," Energy, Elsevier, vol. 48(1), pages 32-39.
  247. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
  248. Guelpa, Elisa & Barbero, Giulia & Sciacovelli, Adriano & Verda, Vittorio, 2017. "Peak-shaving in district heating systems through optimal management of the thermal request of buildings," Energy, Elsevier, vol. 137(C), pages 706-714.
  249. Sorknæs, Peter & Østergaard, Poul Alberg & Thellufsen, Jakob Zinck & Lund, Henrik & Nielsen, Steffen & Djørup, Søren & Sperling, Karl, 2020. "The benefits of 4th generation district heating in a 100% renewable energy system," Energy, Elsevier, vol. 213(C).
  250. Michael Mans & Tobias Blacha & Thomas Schreiber & Dirk Müller, 2022. "Development and Application of an Open-Source Framework for Automated Thermal Network Generation and Simulations in Modelica," Energies, MDPI, vol. 15(12), pages 1-25, June.
  251. Mathiesen, Brian Vad & Lund, Henrik & Connolly, David, 2012. "Limiting biomass consumption for heating in 100% renewable energy systems," Energy, Elsevier, vol. 48(1), pages 160-168.
  252. Björnebo, Lars & Spatari, Sabrina & Gurian, Patrick L., 2018. "A greenhouse gas abatement framework for investment in district heating," Applied Energy, Elsevier, vol. 211(C), pages 1095-1105.
  253. Zakeri, Behnam & Virasjoki, Vilma & Syri, Sanna & Connolly, David & Mathiesen, Brian V. & Welsch, Manuel, 2016. "Impact of Germany's energy transition on the Nordic power market – A market-based multi-region energy system model," Energy, Elsevier, vol. 115(P3), pages 1640-1662.
  254. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
  255. Petrović, Stefan N. & Karlsson, Kenneth B., 2016. "Residential heat pumps in the future Danish energy system," Energy, Elsevier, vol. 114(C), pages 787-797.
  256. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
  257. Mai, Trieu & Mulcahy, David & Hand, M. Maureen & Baldwin, Samuel F., 2014. "Envisioning a renewable electricity future for the United States," Energy, Elsevier, vol. 65(C), pages 374-386.
  258. Davine N. G. Janssen & Eunice Pereira Ramos & Vincent Linderhof & Nico Polman & Chrysi Laspidou & Dennis Fokkinga & Duarte de Mesquita e Sousa, 2020. "The Climate, Land, Energy, Water and Food Nexus Challenge in a Land Scarce Country: Innovations in the Netherlands," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
  259. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
  260. Münster, Marie & Morthorst, Poul Erik & Larsen, Helge V. & Bregnbæk, Lars & Werling, Jesper & Lindboe, Hans Henrik & Ravn, Hans, 2012. "The role of district heating in the future Danish energy system," Energy, Elsevier, vol. 48(1), pages 47-55.
  261. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
  262. Takashi Owaku & Hiromi Yamamoto & Atsushi Akisawa, 2023. "Optimal SOFC-CHP Installation Planning and Operation Model Considering Geographic Characteristics of Energy Supply Infrastructure," Energies, MDPI, vol. 16(5), pages 1-19, February.
  263. Krishnan, Venkat & Das, Trishna, 2015. "Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures," Energy, Elsevier, vol. 81(C), pages 175-188.
  264. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
  265. Savvidou, Georgia & Nykvist, Björn, 2020. "Heat demand in the Swedish residential building stock - pathways on demand reduction potential based on socio-technical analysis," Energy Policy, Elsevier, vol. 144(C).
  266. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
  267. Zakeri, Behnam & Price, James & Zeyringer, Marianne & Keppo, Ilkka & Mathiesen, Brian Vad & Syri, Sanna, 2018. "The direct interconnection of the UK and Nordic power market – Impact on social welfare and renewable energy integration," Energy, Elsevier, vol. 162(C), pages 1193-1204.
  268. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
  269. Farzamkia, Saleh & Ranjbar, Hossein & Hatami, Alireza & Iman-Eini, Hossein, 2016. "A novel PSO (Particle Swarm Optimization)-based approach for optimal schedule of refrigerators using experimental models," Energy, Elsevier, vol. 107(C), pages 707-715.
  270. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
  271. Pietro A. Renzulli & Bruno Notarnicola & Giuseppe Tassielli & Gabriella Arcese & Rosa Di Capua, 2016. "Life Cycle Assessment of Steel Produced in an Italian Integrated Steel Mill," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
  272. Rosato, Antonio & Ciervo, Antonio & Ciampi, Giovanni & Sibilio, Sergio, 2019. "Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings," Renewable Energy, Elsevier, vol. 143(C), pages 596-610.
  273. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  274. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  275. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
  276. Binod Prasad Koirala & José Pablo Chaves Ávila & Tomás Gómez & Rudi A. Hakvoort & Paulien M. Herder, 2016. "Local Alternative for Energy Supply: Performance Assessment of Integrated Community Energy Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
  277. Pakere, Ieva & Lauka, Dace & Blumberga, Dagnija, 2018. "Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant," Energy, Elsevier, vol. 154(C), pages 424-432.
  278. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
  279. Simon Wenninger & Christian Wiethe, 2022. "The Human’s Comfort Mystery—Supporting Energy Transition with Light-Color Dimmable Room Lighting," Sustainability, MDPI, vol. 14(4), pages 1-10, February.
  280. zvingilaite, Erika & Klinge Jacobsen, Henrik, 2012. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local externalities," MPRA Paper 41545, University Library of Munich, Germany.
  281. Xing, Yangang & Hewitt, Neil & Griffiths, Philip, 2011. "Zero carbon buildings refurbishment--A Hierarchical pathway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3229-3236, August.
  282. Persson, Urban & Münster, Marie, 2016. "Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review," Energy, Elsevier, vol. 110(C), pages 116-128.
  283. Dongmin Yu & Huanan Liu & Gangui Yan & Jing Jiang & Simon Le Blond, 2017. "Optimization of Hybrid Energy Storage Systems at the Building Level with Combined Heat and Power Generation," Energies, MDPI, vol. 10(5), pages 1-15, May.
  284. Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
  285. Hansen, Kenneth & Connolly, David & Lund, Henrik & Drysdale, David & Thellufsen, Jakob Zinck, 2016. "Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat," Energy, Elsevier, vol. 115(P3), pages 1663-1671.
  286. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
  287. Åberg, M. & Widén, J. & Henning, D., 2012. "Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example," Energy, Elsevier, vol. 41(1), pages 525-540.
  288. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
  289. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
  290. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
  291. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
  292. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
  293. Miocic, Johannes M. & Krecher, Marc, 2022. "Estimation of shallow geothermal potential to meet building heating demand on a regional scale," Renewable Energy, Elsevier, vol. 185(C), pages 629-640.
  294. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
  295. Nielsen, Steffen & Möller, Bernd, 2013. "GIS based analysis of future district heating potential in Denmark," Energy, Elsevier, vol. 57(C), pages 458-468.
  296. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
  297. Tereshchenko, Tymofii & Nord, Natasa, 2016. "Energy planning of district heating for future building stock based on renewable energies and increasing supply flexibility," Energy, Elsevier, vol. 112(C), pages 1227-1244.
  298. Nielsen, Steffen & Möller, Bernd, 2012. "Excess heat production of future net zero energy buildings within district heating areas in Denmark," Energy, Elsevier, vol. 48(1), pages 23-31.
  299. Stennikov, Valery A. & Iakimetc, Ekaterina E., 2016. "Optimal planning of heat supply systems in urban areas," Energy, Elsevier, vol. 110(C), pages 157-165.
  300. Nussbaumer, T. & Thalmann, S., 2016. "Influence of system design on heat distribution costs in district heating," Energy, Elsevier, vol. 101(C), pages 496-505.
  301. Pelda, Johannes & Stelter, Friederike & Holler, Stefan, 2020. "Potential of integrating industrial waste heat and solar thermal energy into district heating networks in Germany," Energy, Elsevier, vol. 203(C).
  302. Kevin Sartor, 2017. "Simulation Models to Size and Retrofit District Heating Systems," Energies, MDPI, vol. 10(12), pages 1-14, December.
  303. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
  304. Müller, C. & Hoffrichter, A. & Wyrwoll, L. & Schmitt, C. & Trageser, M. & Kulms, T. & Beulertz, D. & Metzger, M. & Duckheim, M. & Huber, M. & Küppers, M. & Most, D. & Paulus, S. & Heger, H.J. & Schnet, 2019. "Modeling framework for planning and operation of multi-modal energy systems in the case of Germany," Applied Energy, Elsevier, vol. 250(C), pages 1132-1146.
  305. Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
  306. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
  307. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
  308. Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer, 2018. "Life Cycle Cost of Heat Supply to Areas with Detached Houses—A Comparison of District Heating and Heat Pumps from an Energy System Perspective," Energies, MDPI, vol. 11(12), pages 1-17, November.
  309. Askeland, Kristine & Bozhkova, Kristina N. & Sorknæs, Peter, 2019. "Balancing Europe: Can district heating affect the flexibility potential of Norwegian hydropower resources?," Renewable Energy, Elsevier, vol. 141(C), pages 646-656.
  310. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
  311. Moreno, Diana & Nielsen, Steffen & Sorknæs, Peter & Lund, Henrik & Thellufsen, Jakob Zinck & Mathiesen, Brian Vad, 2024. "Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities?," Energy, Elsevier, vol. 288(C).
  312. Johra, Hicham & Filonenko, Konstantin & Heiselberg, Per & Veje, Christian & Dall’Olio, Stefano & Engelbrecht, Kurt & Bahl, Christian, 2019. "Integration of a magnetocaloric heat pump in an energy flexible residential building," Renewable Energy, Elsevier, vol. 136(C), pages 115-126.
  313. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
  314. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
  315. Kılkış, Şiir, 2015. "Exergy transition planning for net-zero districts," Energy, Elsevier, vol. 92(P3), pages 515-531.
  316. Chakrabarti, Auyon & Proeglhoef, Rafael & Turu, Gonzalo Bustos & Lambert, Romain & Mariaud, Arthur & Acha, Salvador & Markides, Christos N. & Shah, Nilay, 2019. "Optimisation and analysis of system integration between electric vehicles and UK decentralised energy schemes," Energy, Elsevier, vol. 176(C), pages 805-815.
  317. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
  318. Saha, Mithun & Eckelman, Matthew J., 2015. "Geospatial assessment of potential bioenergy crop production on urban marginal land," Applied Energy, Elsevier, vol. 159(C), pages 540-547.
  319. Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.
  320. Gianni Martinazzoli & Daniele Pasinelli & Adriano Maria Lezzi & Mariagrazia Pilotelli, 2023. "Design of a 5th Generation District Heating Substation Prototype for a Real Case Study," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
  321. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2021. "Design and game-Theoretic analysis of community-Based market mechanisms in heat and electricity systems," Omega, Elsevier, vol. 99(C).
  322. Skalyga, Mikhail & Wu, Qiuwei & Zhang, Menglin, 2021. "Uncertainty-fully-aware coordinated dispatch of integrated electricity and heat system," Energy, Elsevier, vol. 224(C).
  323. Cvetinović, Dejan & Stefanović, Predrag & Marković, Zoran & Bakić, Vukman & Turanjanin, Valentina & Jovanović, Marina & Vučićević, Biljana, 2013. "GHG (Greenhouse Gases) emission inventory and mitigation measures for public district heating plants in the Republic of Serbia," Energy, Elsevier, vol. 57(C), pages 788-795.
  324. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
  325. Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
  326. Popovski, Eftim & Fleiter, Tobias & Santos, Hugo & Leal, Vitor & Fernandes, Eduardo Oliveira, 2018. "Technical and economic feasibility of sustainable heating and cooling supply options in southern European municipalities-A case study for Matosinhos, Portugal," Energy, Elsevier, vol. 153(C), pages 311-323.
  327. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
  328. Li, Lin & Song, Yongchen & Jiang, Bo & Wang, Kaiqiang & Zhang, Qian, 2017. "A novel oxygen carrier for chemical looping reforming: LaNiO3 perovskite supported on montmorillonite," Energy, Elsevier, vol. 131(C), pages 58-66.
  329. Yu, Xiaoman & Geng, Yong & Dong, Huijuan & Ulgiati, Sergio & Liu, Zhe & Liu, Zuoxi & Ma, Zhixiao & Tian, Xu & Sun, Lu, 2016. "Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)," Energy, Elsevier, vol. 107(C), pages 818-830.
  330. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.