IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp318-329.html
   My bibliography  Save this article

GIS-based assessment of the district heating potential in the USA

Author

Listed:
  • Gils, Hans Christian
  • Cofala, Janusz
  • Wagner, Fabian
  • Schöpp, Wolfgang

Abstract

A methodology for the GIS (Geographic Information System) based analysis of DH (District Heating) potentials is introduced and applied to the continental United States. The energy demand for space heating and hot water in the residential and commercial sector is assessed and spatially allocated using high resolution population distribution and land use data. Demand centers are identified and the overall heat demand and its density are extracted. For each of some 4800 agglomerations, average heat distribution costs are calculated and a CHP (combined heat and power) plant suitable in technology and capacity is selected. The results suggest that there is substantial potential for an extension of DH in the United States. Especially in the north eastern part of the country, a significant share of the demand is located in areas of high demand density. Heat distribution costs vary considerably, and are on average slightly lower in greater agglomerations and regions with high specific heat demands. The overall potential, its distribution to geographical regions and CHP technologies, as well as the average heat distribution costs are found to be strongly dependent on the assumed minimum heat demand density applied to classify the grid cells according their suitability for DH.

Suggested Citation

  • Gils, Hans Christian & Cofala, Janusz & Wagner, Fabian & Schöpp, Wolfgang, 2013. "GIS-based assessment of the district heating potential in the USA," Energy, Elsevier, vol. 58(C), pages 318-329.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:318-329
    DOI: 10.1016/j.energy.2013.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reidhav, Charlotte & Werner, Sven, 2008. "Profitability of sparse district heating," Applied Energy, Elsevier, vol. 85(9), pages 867-877, September.
    2. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    3. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    4. Nilsson, Stefan Forsaeus & Reidhav, Charlotte & Lygnerud, Kristina & Werner, Sven, 2008. "Sparse district-heating in Sweden," Applied Energy, Elsevier, vol. 85(7), pages 555-564, July.
    5. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    6. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
    7. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    2. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    3. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    4. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    5. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    6. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    7. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    8. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    9. Hansen, C.H. & Gudmundsson, O. & Detlefsen, N., 2019. "Cost efficiency of district heating for low energy buildings of the future," Energy, Elsevier, vol. 177(C), pages 77-86.
    10. Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer, 2018. "Life Cycle Cost of Heat Supply to Areas with Detached Houses—A Comparison of District Heating and Heat Pumps from an Energy System Perspective," Energies, MDPI, vol. 11(12), pages 1-17, November.
    11. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    12. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    13. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    14. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
    15. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    16. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    17. Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2014. "An enviro-economic function for assessing energy resources for district energy systems," Energy, Elsevier, vol. 70(C), pages 159-164.
    18. Gebremedhin, Alemayehu, 2014. "Optimal utilisation of heat demand in district heating system—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 230-236.
    19. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    20. Darryl Biggar & Matthieu Glachant & Magnus Söderberg, 2018. "Monopoly regulation when customers need to make sunk investments: evidence from the Swedish district heating sector," Journal of Regulatory Economics, Springer, vol. 54(1), pages 14-40, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:318-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.