IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v42y2012i1p81-93.html
   My bibliography  Save this article

Analysis of a new induction thermal converter for heating

Author

Listed:
  • Popa, Cezar
  • Pentiuc, Radu

Abstract

The paper presents a new type of electro-thermal converter whose particular applications are used especially in heating materials or residential buildings. The converter is in fact a single-phase transformer with a massif secondary winding, calculated to work in short-circuit but in a stabilized thermal regime. The authors developed a coupled electric-magnetic-thermal numerical model that improved the calculation of power and temperature distribution in the secondary massive coil. Knowledge of local magnetic field intensity gives the possibility to evaluate local current density and volume distribution of electrical power in the material. The model can be used to predict evolution of coil temperature for different charges, secondary coil materials and for different geometrical designs. The equations used for the development of the numerical solutions are presented below, as well as some experimental results and practical applications.

Suggested Citation

  • Popa, Cezar & Pentiuc, Radu, 2012. "Analysis of a new induction thermal converter for heating," Energy, Elsevier, vol. 42(1), pages 81-93.
  • Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:81-93
    DOI: 10.1016/j.energy.2011.07.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211005196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.07.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    2. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    3. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
    2. Darhovsky, Yegal & Mellincovsky, Martin & Baimel, Dmitry & Kuperman, Alon, 2021. "A novel contactless, feedbackless and sensorless power delivery link to electromagnetic levitation melting system residing in sealed compartment," Energy, Elsevier, vol. 231(C).
    3. El-Kharashi, Eyhab & Massoud, Joseph Girgis & Al-Ahmar, M.A., 2019. "The impact of the unbalance in both the voltage and the frequency on the performance of single and cascaded induction motors," Energy, Elsevier, vol. 181(C), pages 561-575.
    4. Yang, Jieren & Chen, Ruirun & Su, Yanqing & Ding, Hongsheng & Guo, Jingjie & Fu, Hengzhi, 2018. "Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy," Energy, Elsevier, vol. 161(C), pages 143-155.
    5. El-Kharashi, Eyhab & El-Dessouki, Maher, 2014. "Coupling induction motors to improve the energy conversion process during balanced and unbalanced operation," Energy, Elsevier, vol. 65(C), pages 511-516.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    2. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    3. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    6. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    7. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    8. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    9. Primitivo Díaz & Marco Pérez-Cisneros & Erik Cuevas & Omar Avalos & Jorge Gálvez & Salvador Hinojosa & Daniel Zaldivar, 2018. "An Improved Crow Search Algorithm Applied to Energy Problems," Energies, MDPI, vol. 11(3), pages 1-22, March.
    10. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    11. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    12. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    13. Mazaher Haji Bashi & Gholamreza Yousefi & Claus Leth Bak & Jayakrishnan Radhakrishna Pillai, 2016. "Long Term Expected Revenue of Wind Farms Considering the Bidding Admission Uncertainty," Energies, MDPI, vol. 9(11), pages 1-17, November.
    14. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    15. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    16. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    17. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    18. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    19. Sousa Santos, Vladimir & Cabello Eras, Juan J. & Cabello Ulloa, Mario J., 2024. "Evaluation of the energy saving potential in electric motors applying a load-based voltage control method," Energy, Elsevier, vol. 303(C).
    20. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:81-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.