IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029517.html
   My bibliography  Save this article

The role of solar district heat in the energy transition of the German heating sector

Author

Listed:
  • Popovski, Eftim
  • Fleiter, Tobias
  • Ragwitz, Mario

Abstract

This study explores the integration of solar district heating (SDH) into German heating networks, focusing on the energy transition in the heating sector. Utilizing energyPRO software, 8410 scenario variations were analysed, considering collector areas ranging from 1000 to 200 000 m2 and thermal storage capacities from 0 to 100 000 m³. The research identifies the most cost-effective SDH system designs, with solar fractions between 11 % and 18 % and collector area/storage ratios between 4 and 6.7, resulting in levelized costs of heat (LCOH) between 45 and 64 €/MWh. The techno-economic potential of SDH in Germany is estimated at 17.6 TWh by using a spatial analysis model. The paper presents sensitivity analyses and preliminary design equations, contributing to a comprehensive understanding of SDH's role in decarbonizing the heating sector. By integrating spatial data analysis with energy system modeling, the study offers a novel methodological approach, providing insights into the technical and economic feasibility of SDH systems in Northern Germany and similar climatic regions. The findings aim to assist policymakers and decision-makers in evaluating the costs and dimensions of SDH systems based on local heat demands and influencing economic and technical factors.

Suggested Citation

  • Popovski, Eftim & Fleiter, Tobias & Ragwitz, Mario, 2024. "The role of solar district heat in the energy transition of the German heating sector," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029517
    DOI: 10.1016/j.energy.2024.133176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.