IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1665-d112476.html
   My bibliography  Save this article

Water-Thermal Energy Production System: A Case Study from Norway

Author

Listed:
  • Johannes Idsø

    (Department of Social Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway
    These authors contributed equally to this work.)

  • Torbjørn Årethun

    (Department of Social Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway
    These authors contributed equally to this work.)

Abstract

The purpose of this paper is to describe a new way of producing renewable energy based on fjords as a water heater. We will call this system the Water-thermal Energy Production System (WEPS), because the basic idea is to extract heating and cooling energy from water. Although a prototype of WEPS has existed in Norway for more than ten years, a WEPS currently in operation has not been financially analyzed in the literature. Coastal parts of Norway have a potential of 5 TWh of profitable WEPS-facilities, due to convenient access to fjords containing water with stable all-season temperatures of about 4–12 °C when the depth of the water is about 50 m. This stability of the water temperature makes it possible to extract energy from the fjord in a very efficient way. The potential for economically-profitable WEPS in other parts of the world has not been estimated. In order to answer such a question, more research is required. We have conducted a case study of a WEPS located in the Norwegian municipality of Eid. This is the first full-scale Norwegian WEPS, and it has been operating since 2006. The nascent years have passed, and the technology has been in operation for some years. In this paper, we have made an estimate of the business profitability and the external effects based on past empirical evidence and some assumptions about future development in some key figures. The results suggests that WEPS-Eid has been a profitable investment carrying a positive internal rate of revenue, even if the present underutilization in production capacity will continue in the future. Stability in energy prices for heating purposes has also gained customers compared to the more volatile prices of alternative renewable energy, such as hydropower or wind turbines. The negative, external effects in the operating phase from WEPS-Eid are insignificant. Despite the significant profitability of the WEPS facility in Eid, there are two main obstacles for new entrants. There is a lack of relevant operational information for potential investors due to few facilities. This leads to uncertainty, and investments in WEPS appear as a risky business. Secondly, construction of a WEPS requires both big financial investments in digging and facilitating long trenches for a pipeline system and time and effort spent on acquiring the licenses needed for doing this work. A coordinating unit is probably required in order to get the necessary public and private licenses and to reduce fixed costs by coordinating other tasks in the same trenches, such as pipes for water and sewer, fiber cables and tele-cables. In Eid, the local municipal administration was the coordinating unit.

Suggested Citation

  • Johannes Idsø & Torbjørn Årethun, 2017. "Water-Thermal Energy Production System: A Case Study from Norway," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1665-:d:112476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    2. Zhen, Li & Lin, D.M. & Shu, H.W. & Jiang, Shuang & Zhu, Y.X., 2007. "District cooling and heating with seawater as heat source and sink in Dalian, China," Renewable Energy, Elsevier, vol. 32(15), pages 2603-2616.
    3. Anthony D. Owen, 2004. "Environmental Externalities, Market Distortions and the Economics of Renewable Energy Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 127-158.
    4. Huculak, Maciej & Jarczewski, Wojciech & Dej, Magdalena, 2015. "Economic aspects of the use of deep geothermal heat in district heating in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 29-40.
    5. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manz, Pia & Billerbeck, Anna & Kök, Ali & Fallahnejad, Mostafa & Fleiter, Tobias & Kranzl, Lukas & Braungardt, Sibylle & Eichhammer, Wolfgang, 2024. "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    2. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    3. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    4. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    5. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    6. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    7. Guelpa, Elisa, 2020. "Impact of network modelling in the analysis of district heating systems," Energy, Elsevier, vol. 213(C).
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    10. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    11. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    12. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    13. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    14. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    15. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    16. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    17. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    18. Mazaher Haji Bashi & Gholamreza Yousefi & Claus Leth Bak & Jayakrishnan Radhakrishna Pillai, 2016. "Long Term Expected Revenue of Wind Farms Considering the Bidding Admission Uncertainty," Energies, MDPI, vol. 9(11), pages 1-17, November.
    19. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    20. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1665-:d:112476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.