Sparse dynamic graph learning for district heat load forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123685
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Kurek, Teresa & Bielecki, Artur & Świrski, Konrad & Wojdan, Konrad & Guzek, Michał & Białek, Jakub & Brzozowski, Rafał & Serafin, Rafał, 2021. "Heat demand forecasting algorithm for a Warsaw district heating network," Energy, Elsevier, vol. 217(C).
- Huang, Yaohui & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng & Liu, Hanjing & Fu, Yonggang, 2023. "Explainable district heat load forecasting with active deep learning," Applied Energy, Elsevier, vol. 350(C).
- Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).
- Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
- Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
- Yong Zhou & Lingyu Wang & Junhao Qian, 2022. "Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
- Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
- Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
- Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
- Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
- Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
- Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
- Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
- Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
- Vahid Arabzadeh & Peter D. Lund, 2020. "Effect of Heat Demand on Integration of Urban Large-Scale Renewable Schemes—Case of Helsinki City (60 °N)," Energies, MDPI, vol. 13(9), pages 1-17, May.
- Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
- Wang, Chendong & Yuan, Jianjuan & Zhang, Ji & Deng, Na & Zhou, Zhihua & Gao, Feng, 2020. "Multi-criteria comprehensive study on predictive algorithm of heating energy consumption of district heating station based on timeseries processing," Energy, Elsevier, vol. 202(C).
- Noorollahi, Younes & Golshanfard, Aminabbas & Ansaripour, Shiva & Khaledi, Arian & Shadi, Mehdi, 2021. "Solar energy for sustainable heating and cooling energy system planning in arid climates," Energy, Elsevier, vol. 218(C).
- Trabert, Ulrich & Pag, Felix & Orozaliev, Janybek & Jordan, Ulrike & Vajen, Klaus, 2024. "Peak shaving at system level with a large district heating substation using deep learning forecasting models," Energy, Elsevier, vol. 301(C).
- Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
- Abolfazl Rezaei & Bahador Samadzadegan & Hadise Rasoulian & Saeed Ranjbar & Soroush Samareh Abolhassani & Azin Sanei & Ursula Eicker, 2021. "A New Modeling Approach for Low-Carbon District Energy System Planning," Energies, MDPI, vol. 14(5), pages 1-22, March.
- Fabian Ochs & Mara Magni & Georgios Dermentzis, 2022. "Integration of Heat Pumps in Buildings and District Heating Systems—Evaluation on a Building and Energy System Level," Energies, MDPI, vol. 15(11), pages 1-33, May.
- Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
- Mitterrutzner, Benjamin & Callegher, Claudio Zandonella & Fraboni, Riccardo & Wilczynski, Eric & Pezzutto, Simon, 2023. "Review of heating and cooling technologies for buildings: A techno-economic case study of eleven European countries," Energy, Elsevier, vol. 284(C).
- Moreno, Diana & Nielsen, Steffen & Sorknæs, Peter & Lund, Henrik & Thellufsen, Jakob Zinck & Mathiesen, Brian Vad, 2024. "Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities?," Energy, Elsevier, vol. 288(C).
- Boussaid, Taha & Rousset, François & Scuturici, Vasile-Marian & Clausse, Marc, 2024. "Enabling fast prediction of district heating networks transients via a physics-guided graph neural network," Applied Energy, Elsevier, vol. 370(C).
- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
More about this item
Keywords
District heating; Dynamic graph neural network; Spatio-temporal forecasting; Heat load prediction; Sparse graph learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.