IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p1228-1238.html
   My bibliography  Save this article

Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks

Author

Listed:
  • Wahlroos, Mikko
  • Pärssinen, Matti
  • Manner, Jukka
  • Syri, Sanna

Abstract

Data centers seek solutions to increase energy efficiency and lower costs by novel methods. Waste heat utilization is considered to be one of the major trends in the near future, especially in the Nordic countries, where heat demand is high. In this paper, waste heat utilization was analyzed from the perspectives of both the data center and district heating network operators. Timing of the data center waste heat production was considered based on an existing data center load profile. For the district heating network operator, the system level effects of increased waste heat utilization were quantified by simulating district heating production in the city of Espoo, Finland, with actual plant and heat demand data for 2013 and 2015. Results showed that with high shares of waste heat in the district heating system, i.e. 20–60 MW, the system level operational cost savings were 0.6–7.3% in the case study. Utilizing waste heat decreased utilization hours of both combined heat and power plants and heat-only boilers. The analysis showed that pricing of the procured waste heat affects the utilization level of waste heat, but operational hours of waste heat utilization were over 95% in all scenarios.

Suggested Citation

  • Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:1228-1238
    DOI: 10.1016/j.energy.2017.08.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.
    2. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    3. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
    4. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    5. Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    2. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    3. Davine N. G. Janssen & Eunice Pereira Ramos & Vincent Linderhof & Nico Polman & Chrysi Laspidou & Dennis Fokkinga & Duarte de Mesquita e Sousa, 2020. "The Climate, Land, Energy, Water and Food Nexus Challenge in a Land Scarce Country: Innovations in the Netherlands," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    4. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    5. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2020. "Heat and electricity market coordination: A scalable complementarity approach," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1107-1123.
    7. Silva, C.A. & Vilaça, R. & Pereira, A. & Bessa, R.J., 2024. "A review on the decarbonization of high-performance computing centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Fang, Yujuan & Chen, Laijun & Mei, Shengwei & Wei, Wei & Huang, Shaowei & Liu, Feng, 2019. "Coal or electricity? An evolutionary game approach to investigate fuel choices of urban heat supply systems," Energy, Elsevier, vol. 181(C), pages 107-122.
    9. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    10. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    11. Shuja, Junaid & Gani, Abdullah & Shamshirband, Shahaboddin & Ahmad, Raja Wasim & Bilal, Kashif, 2016. "Sustainable Cloud Data Centers: A survey of enabling techniques and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 195-214.
    12. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    14. Zakeri, Behnam & Virasjoki, Vilma & Syri, Sanna & Connolly, David & Mathiesen, Brian V. & Welsch, Manuel, 2016. "Impact of Germany's energy transition on the Nordic power market – A market-based multi-region energy system model," Energy, Elsevier, vol. 115(P3), pages 1640-1662.
    15. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    16. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    17. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    18. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    19. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    20. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:1228-1238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.