IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp299-308.html
   My bibliography  Save this article

Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia

Author

Listed:
  • Farnoosh, Arash
  • Lantz, Frederic
  • Percebois, Jacques

Abstract

In Saudi Arabia, fossil-fuel is the main source of power generation. Due to the huge economic and demographic growth, the electricity consumption in Saudi Arabia has increased and should continue to increase at a very fast rate. At the moment, more than half a million barrels of oil per day is used directly for power generation. Herein, we assess the power generation situation of the country and its future conditions through a modelling approach. For this purpose, we present the current situation by detailing the existing generation mix of electricity. Then we develop an optimization model of the power sector which aims to define the best production and investment pattern to reach the expected demand. Subsequently, we will carry out a sensitivity analysis so as to evaluate the robustness of the model's by taking into account the integration variability of the other alternative (non-fossil fuel based) resources. The results point out that the choices of investment in the power sector strongly affect the potential oil's exports of Saudi Arabia. For instance, by decarbonizing half of its generation mix, Saudi Arabia can release around 0.5 Mb/d barrels of oil equivalent per day from 2020. Moreover, total power generation cost reduction can reach up to around 28% per year from 2030 if Saudi Arabia manages to attain the most optimal generation mix structure introduced in the model (50% of power from renewables and nuclear power plants and 50% from the fossil power plants).

Suggested Citation

  • Farnoosh, Arash & Lantz, Frederic & Percebois, Jacques, 2014. "Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia," Energy, Elsevier, vol. 69(C), pages 299-308.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:299-308
    DOI: 10.1016/j.energy.2014.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segurado, Raquel & Krajacic, Goran & Duic, Neven & Alves, Luís, 2011. "Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde," Applied Energy, Elsevier, vol. 88(2), pages 466-472, February.
    2. Haidar, Ahmed M.A. & John, Priscilla N. & Shawal, Mohd, 2011. "Optimal configuration assessment of renewable energy in Malaysia," Renewable Energy, Elsevier, vol. 36(2), pages 881-888.
    3. Hainoun, A. & Seif Aldin, M. & Almoustafa, S., 2010. "Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model," Energy Policy, Elsevier, vol. 38(4), pages 1701-1714, April.
    4. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    5. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    6. Alnatheer, Othman, 2006. "Environmental benefits of energy efficiency and renewable energy in Saudi Arabia's electric sector," Energy Policy, Elsevier, vol. 34(1), pages 2-10, January.
    7. Alnaser, W.E. & Alnaser, N.W., 2011. "The status of renewable energy in the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3074-3098, August.
    8. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    9. Stefan Kruger Nielsen & Kenneth Karlsson, 2007. "Energy scenarios: a review of methods, uses and suggestions for improvement," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(3), pages 302-322.
    10. Youngho Chang & Yanfei Li, . "Power Generation and Cross-border Grid Planning for the Integrated ASEAN Electricity Market: A Dynamic Linear Programming Model," Chapters, in: Yanrui Wu & Xunpeng Shi & Fukunari Kimura (ed.), Energy Market Integration in East Asia: Theories, Electricity Sector and Subsidies, chapter 3, pages 37-58, Economic Research Institute for ASEAN and East Asia (ERIA).
    11. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    12. Brand, Bernhard & Zingerle, Jonas, 2011. "The renewable energy targets of the Maghreb countries: Impact on electricity supply and conventional power markets," Energy Policy, Elsevier, vol. 39(8), pages 4411-4419, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Zubair & Ahmed Bilal Awan & Abdullah Al-Ahmadi & Ahmed G. Abo-Khalil, 2018. "NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device," Energies, MDPI, vol. 11(6), pages 1-20, May.
    2. Groissböck, Markus & Pickl, Matthias J., 2018. "Fuel-price reform to achieve climate and energy policy goals in Saudi Arabia: A multiple-scenario analysis," Utilities Policy, Elsevier, vol. 50(C), pages 1-12.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Salem Algarni, 2019. "Potential for cooling load reduction in residential buildings using cool roofs in the harsh climate of Saudi Arabia," Energy & Environment, , vol. 30(2), pages 235-253, March.
    5. Ghaithan, Ahmed & Hadidi, Laith & Mohammed, Awsan, 2024. "Techno-economic assessment of concentrated solar power generation in Saudi Arabia," Renewable Energy, Elsevier, vol. 220(C).
    6. Shabaneh, Rami & Schenckery, Maxime, 2020. "Assessing energy policy instruments: LNG imports into Saudi Arabia," Energy Policy, Elsevier, vol. 137(C).
    7. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    8. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    9. Düştegör, Dilek & Sultana, Nahid & Felemban, Noor & Al Qahtani, Deemah, 2018. "A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications," Utilities Policy, Elsevier, vol. 50(C), pages 26-39.
    10. Yang, Yafei & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2022. "Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030," Ecological Economics, Elsevier, vol. 192(C).
    11. Groissböck, Markus & Pickl, Matthias J., 2016. "An analysis of the power market in Saudi Arabia: Retrospective cost and environmental optimization," Applied Energy, Elsevier, vol. 165(C), pages 548-558.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xydis, G., 2012. "Development of an integrated methodology for the energy needs of a major urban city: The case study of Athens, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6705-6716.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    4. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    5. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    6. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    7. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    8. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    9. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
    10. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    11. Blarke, Morten B. & Jenkins, Bryan M., 2013. "SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?," Energy Policy, Elsevier, vol. 58(C), pages 381-390.
    12. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    13. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    14. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    15. Pillai, Jayakrishnan R. & Heussen, Kai & Østergaard, Poul Alberg, 2011. "Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios," Energy, Elsevier, vol. 36(5), pages 3233-3243.
    16. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    17. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    18. Lowe, Robert, 2011. "Combined heat and power considered as a virtual steam cycle heat pump," Energy Policy, Elsevier, vol. 39(9), pages 5528-5534, September.
    19. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
    20. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:299-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.