IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v101y2016icp496-505.html
   My bibliography  Save this article

Influence of system design on heat distribution costs in district heating

Author

Listed:
  • Nussbaumer, T.
  • Thalmann, S.

Abstract

The study introduces an economic analysis for district heating networks from 0.5 MW to 4 MW. The reference case describes a linear network with 1 MW input, 1 km pipeline length, and 2000 annual full-load hours corresponding to a linear heat density of 2 MWh input per year and meter of pipeline. Pipe diameter, connection load, fuel price, electricity price, and insulation class are investigated and the influence of linear and radial connection and the effect of the consumer distribution are evaluated. The reference case for an annuity of 5.1% p.a. and a heat price of 5.0 euro cent per kWh reveals heat distribution costs of 2.16 c/kWh for the optimum pipe diameter. For distributed heat consumers, the costs decrease to 1.99 c/kWh and for a radial network to 1.77 c/kWh. The evaluation reveals that district heating is related to diseconomies of scale for a linear network expansion at constant linear heat density and that the total costs are dominated by the capital costs. Consequently, the main requirement to minimise the heat distribution costs implies the use of the smallest technically feasible pipe diameter which refers to the maximum allowable differential pressure without inadmissible cavitation pitting.

Suggested Citation

  • Nussbaumer, T. & Thalmann, S., 2016. "Influence of system design on heat distribution costs in district heating," Energy, Elsevier, vol. 101(C), pages 496-505.
  • Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:496-505
    DOI: 10.1016/j.energy.2016.02.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630113X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madlener, Reinhard, 2007. "Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria," Energy Policy, Elsevier, vol. 35(3), pages 1992-2008, March.
    2. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    3. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    5. Pirouti, Marouf & Bagdanavicius, Audrius & Ekanayake, Janaka & Wu, Jianzhong & Jenkins, Nick, 2013. "Energy consumption and economic analyses of a district heating network," Energy, Elsevier, vol. 57(C), pages 149-159.
    6. Gadd, Henrik & Werner, Sven, 2015. "Fault detection in district heating substations," Applied Energy, Elsevier, vol. 157(C), pages 51-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    3. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    4. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    5. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    6. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    7. Theofanis Benakopoulos & Robbe Salenbien & Dirk Vanhoudt & Svend Svendsen, 2019. "Improved Control of Radiator Heating Systems with Thermostatic Radiator Valves without Pre-Setting Function," Energies, MDPI, vol. 12(17), pages 1-24, August.
    8. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    9. Sarran, Lucile & Smith, Kevin M. & Hviid, Christian A. & Rode, Carsten, 2022. "Grey-box modelling and virtual sensors enabling continuous commissioning of hydronic floor heating," Energy, Elsevier, vol. 261(PB).
    10. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    11. Sernhed, Kerstin & Lygnerud, Kristina & Werner, Sven, 2018. "Synthesis of recent Swedish district heating research," Energy, Elsevier, vol. 151(C), pages 126-132.
    12. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    13. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    14. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    15. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    16. Caputo, Paola & Ferla, Giulio & Ferrari, Simone, 2019. "Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy," Energy, Elsevier, vol. 174(C), pages 1210-1218.
    17. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Serafeim Moustakidis & Ioannis Meintanis & George Halikias & Nicos Karcanias, 2019. "An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results," Resources, MDPI, vol. 8(1), pages 1-15, January.
    19. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:101:y:2016:i:c:p:496-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.