IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v117y2016ip2p485-491.html
   My bibliography  Save this article

Thermoeconomic cost assessment in future district heating networks

Author

Listed:
  • Verda, Vittorio
  • Caccin, Marco
  • Kona, Albana

Abstract

This paper aims at showing the capabilities of thermoeconomic analysis for solving cost assessments in district heating systems both at user and producer sides. In the near future it is expected that multiple producers are allowed to supply heat to the same district heating network, similarly to what happens in the case of the electric grid. Not only the amount of heat they may produce should be properly accounted, but also its quality, and also the pumping power that is requested to supply a unity of thermal energy to the end-users. Moreover, buildings equipped with low temperature heating system allow better use of the thermal energy vector, thus allowing larger efficiency of thermal plants.

Suggested Citation

  • Verda, Vittorio & Caccin, Marco & Kona, Albana, 2016. "Thermoeconomic cost assessment in future district heating networks," Energy, Elsevier, vol. 117(P2), pages 485-491.
  • Handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:485-491
    DOI: 10.1016/j.energy.2016.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216309409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, Georgios & Winhold, Michael, 1985. "Exergoeconomic analysis and evaluation of energy-conversion plants—I. A new general methodology," Energy, Elsevier, vol. 10(1), pages 69-80.
    2. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    3. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
    4. Adamo, L. & Cammarata, G. & Fichera, A. & Marletta, L., 1997. "Improvement of a district heating network through thermoeconomic approach," Renewable Energy, Elsevier, vol. 10(2), pages 213-216.
    5. Magnusson, Dick, 2012. "Swedish district heating—A system in stagnation: Current and future trends in the district heating sector," Energy Policy, Elsevier, vol. 48(C), pages 449-459.
    6. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    7. Westin, Paul & Lagergren, Fredrik, 2002. "Re-regulating district heating in Sweden," Energy Policy, Elsevier, vol. 30(7), pages 583-596, June.
    8. Gaggioli, Richard A. & Wepfer, William J., 1980. "Exergy economics," Energy, Elsevier, vol. 5(8), pages 823-837.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albana Kona & Paolo Bertoldi & Şiir Kılkış, 2019. "Covenant of Mayors: Local Energy Generation, Methodology, Policies and Good Practice Examples," Energies, MDPI, vol. 12(6), pages 1-29, March.
    2. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    3. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    4. Catrini, P. & Cellura, M. & Guarino, F. & Panno, D. & Piacentino, A., 2018. "An integrated approach based on Life Cycle Assessment and Thermoeconomics: Application to a water-cooled chiller for an air conditioning plant," Energy, Elsevier, vol. 160(C), pages 72-86.
    5. Topal, Halil İbrahim & Tol, Hakan İbrahim & Kopaç, Mehmet & Arabkoohsar, Ahmad, 2022. "Energy, exergy and economic investigation of operating temperature impacts on district heating systems: Transition from high to low-temperature networks," Energy, Elsevier, vol. 251(C).
    6. Manrique Delgado, Benjamin & Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2017. "Thermoeconomic analysis of heat and electricity prosumers in residential zero-energy buildings in Finland," Energy, Elsevier, vol. 130(C), pages 544-559.
    7. Guelpa, Elisa & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Thermo-fluid dynamic model of large district heating networks for the analysis of primary energy savings," Energy, Elsevier, vol. 184(C), pages 34-44.
    8. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazzaretto, Andrea, 2009. "A critical comparison between thermoeconomic and emergy analyses algebra," Energy, Elsevier, vol. 34(12), pages 2196-2205.
    2. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    3. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    4. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    5. Tonon, S. & Brown, M.T. & Luchi, F. & Mirandola, A. & Stoppato, A. & Ulgiati, S., 2006. "An integrated assessment of energy conversion processes by means of thermodynamic, economic and environmental parameters," Energy, Elsevier, vol. 31(1), pages 149-163.
    6. González, A. & Sala, J.M. & Flores, I. & López, L.M., 2003. "Application of thermoeconomics to the allocation of environmental loads in the life cycle assessment of cogeneration plants," Energy, Elsevier, vol. 28(6), pages 557-574.
    7. Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.
    8. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    9. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    10. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    11. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    12. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.
    13. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    14. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    15. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    16. Wissner, Matthias, 2014. "Regulation of district-heating systems," Utilities Policy, Elsevier, vol. 31(C), pages 63-73.
    17. Emilio Font de Mora & César Torres & Antonio Valero, 2015. "Thermoeconomic Analysis of Biodiesel Production from Used Cooking Oils," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    18. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    19. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    20. Gorroño-Albizu, Leire & de Godoy, Jaqueline, 2021. "Getting fair institutional conditions for district heating consumers: Insights from Denmark and Sweden," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:485-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.