Evaluation of Integrated Concepts with CO 2 for Heating, Cooling and Hot Water Production
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
- Bolaji, B.O. & Huan, Z., 2013. "Ozone depletion and global warming: Case for the use of natural refrigerant – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 49-54.
- Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
- Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
- Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
- Gullo, Paride & Elmegaard, Brian & Cortella, Giovanni, 2016. "Advanced exergy analysis of a R744 booster refrigeration system with parallel compression," Energy, Elsevier, vol. 107(C), pages 562-571.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Borna Doračić & Tomislav Novosel & Tomislav Pukšec & Neven Duić, 2018. "Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat," Energies, MDPI, vol. 11(3), pages 1-14, March.
- Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
- Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
- Fernqvist, Niklas & Broberg, Sarah & Torén, Johan & Svensson, Inger-Lise, 2023. "District heating as a flexibility service: Challenges in sector coupling for increased solar and wind power production in Sweden," Energy Policy, Elsevier, vol. 172(C).
- Waite, Michael & Modi, Vijay, 2014. "Potential for increased wind-generated electricity utilization using heat pumps in urban areas," Applied Energy, Elsevier, vol. 135(C), pages 634-642.
- Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Andreas Bloess & Wolf-Peter Schill & Alexander Zerrahn, 2017. "Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials," Discussion Papers of DIW Berlin 1677, DIW Berlin, German Institute for Economic Research.
- Aoun, Nadine & Bavière, Roland & Vallée, Mathieu & Aurousseau, Antoine & Sandou, Guillaume, 2019. "Modelling and flexible predictive control of buildings space-heating demand in district heating systems," Energy, Elsevier, vol. 188(C).
- Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
- Askeland, Kristine & Bozhkova, Kristina N. & Sorknæs, Peter, 2019. "Balancing Europe: Can district heating affect the flexibility potential of Norwegian hydropower resources?," Renewable Energy, Elsevier, vol. 141(C), pages 646-656.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
- Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
- Tereshchenko, Tymofii & Nord, Natasa, 2016. "Energy planning of district heating for future building stock based on renewable energies and increasing supply flexibility," Energy, Elsevier, vol. 112(C), pages 1227-1244.
- Ana M. Marina Domingo & Javier M. Rey-Hernández & Julio F. San José Alonso & Raquel Mata Crespo & Francisco J. Rey Martínez, 2018. "Energy Efficiency Analysis Carried Out by Installing District Heating on a University Campus. A Case Study in Spain," Energies, MDPI, vol. 11(10), pages 1-20, October.
- Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimization framework for distributed energy systems with integrated electrical grid constraints," Applied Energy, Elsevier, vol. 171(C), pages 296-313.
- Mastrowski, Mikolaj & Smolka, Jacek & Hafner, Armin & Haida, Michal & Palacz, Michal & Banasiak, Krzysztof, 2019. "Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems," Energy, Elsevier, vol. 173(C), pages 586-597.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
More about this item
Keywords
heat pump; system design; heating and cooling; hotels; CO 2 ; thermal storage; numerical modeling; concept evaluation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4103-:d:590139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.