IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp149-159.html
   My bibliography  Save this article

Energy consumption and economic analyses of a district heating network

Author

Listed:
  • Pirouti, Marouf
  • Bagdanavicius, Audrius
  • Ekanayake, Janaka
  • Wu, Jianzhong
  • Jenkins, Nick

Abstract

An approach for minimisation of the capital costs and energy consumption in a district heating network is presented using a case study based on a district heating network in South Wales, UK. A number of different design cases were simulated using the PSS SINCAL, taking into account different supply and return temperatures and target pressure losses. The operation of the district heating network was synthesised under different design cases using four district heating operating strategies. Optimisation was conducted to obtain the optimal flow rate and supply temperature for the variable flow and variable supply temperature operating strategy. The optimisation model was formulated using the FICO™ Xpress optimisation suite. The objective of optimisation was to minimise the annual total energy consumption and costs. Using each operating strategy, the annual pump energy consumption, heat losses and the equivalent annual cost were found and compared. A variable flow and variable supply temperature operating strategy was found to be beneficial in all cases. Design cases with minimum annual total energy consumption and cost used small pipe diameters and large pressure drops. Further, by increasing temperature difference between supply and return pipes, the annual total energy consumption and the equivalent annual cost were reduced.

Suggested Citation

  • Pirouti, Marouf & Bagdanavicius, Audrius & Ekanayake, Janaka & Wu, Jianzhong & Jenkins, Nick, 2013. "Energy consumption and economic analyses of a district heating network," Energy, Elsevier, vol. 57(C), pages 149-159.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:149-159
    DOI: 10.1016/j.energy.2013.01.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yildirim, Nurdan & Toksoy, Macit & Gokcen, Gulden, 2010. "Piping network design of geothermal district heating systems: Case study for a university campus," Energy, Elsevier, vol. 35(8), pages 3256-3262.
    2. Jing Liu & Shi Li, 2011. "Changes in Consumption Inequality in China," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 201111, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    3. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2010. "Improved district heating substation efficiency with a new control strategy," Applied Energy, Elsevier, vol. 87(6), pages 1996-2004, June.
    4. N/A, 2011. "Sustainable Consumption," Journal of Education for Sustainable Development, , vol. 5(2), pages 164-164, September.
    5. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    6. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    7. Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
    8. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    9. Rolfsman, Björn, 2004. "Combined heat-and-power plants and district heating in a deregulated electricity market," Applied Energy, Elsevier, vol. 78(1), pages 37-52, May.
    10. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    11. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    12. Jing Xiao & Haifeng Li, 2011. "Sustainable Consumption and Life Satisfaction," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 104(2), pages 323-329, November.
    13. Darrat, Ali F. & Li, Bin & Park, Jung Chul, 2011. "Consumption-based CAPM models: International evidence," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 2148-2157, August.
    14. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    15. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
    16. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    2. Sanaei, Sayyed Mohammad & Nakata, Toshihiko, 2012. "Optimum design of district heating: Application of a novel methodology for improved design of community scale integrated energy systems," Energy, Elsevier, vol. 38(1), pages 190-204.
    3. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
    4. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
    5. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    6. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    7. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    8. Čož, T. Duh & Kitanovski, A. & Poredoš, A., 2017. "Exergoeconomic optimization of a district cooling network," Energy, Elsevier, vol. 135(C), pages 342-351.
    9. Jie, Pengfei & Zhao, Wanyue & Li, Fating & Wei, Fengjun & Li, Jing, 2020. "Optimizing the pressure drop per unit length of district heating piping networks from an environmental perspective," Energy, Elsevier, vol. 202(C).
    10. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
    13. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    14. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    15. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    16. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    17. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    18. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
    20. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:149-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.