Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127260
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
- Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
- Cai, Hanmin & You, Shi & Wang, Jiawei & Bindner, Henrik W. & Klyapovskiy, Sergey, 2018. "Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis," Energy, Elsevier, vol. 150(C), pages 938-949.
- Volkova, Anna & Krupenski, Igor & Pieper, Henrik & Ledvanov, Aleksandr & Latõšov, Eduard & Siirde, Andres, 2019. "Small low-temperature district heating network development prospects," Energy, Elsevier, vol. 178(C), pages 714-722.
- Chicherin, Stanislav & Zhuikov, Andrey & Junussova, Lyazzat, 2022. "The new method for hydraulic calculations of a district heating (DH) network," Energy, Elsevier, vol. 260(C).
- Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
- Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
- Perpar, Matjaž & Rek, Zlatko, 2020. "Soil temperature gradient as a useful tool for small water leakage detection from district heating pipes in buried channels," Energy, Elsevier, vol. 201(C).
- Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
- Dorota Anna Krawczyk & Tomasz Janusz Teleszewski, 2019. "Optimization of Geometric Parameters of Thermal Insulation of Pre-Insulated Double Pipes," Energies, MDPI, vol. 12(6), pages 1-11, March.
- Peter Lidén & Bijan Adl-Zarrabi & Carl-Eric Hagentoft, 2021. "Diagnostic Protocol for Thermal Performance of District Heating Pipes in Operation. Part 2: Estimation of Present Thermal Conductivity in Aged Pipe Insulation," Energies, MDPI, vol. 14(17), pages 1-15, August.
- Dorota Anna Krawczyk & Tomasz Janusz Teleszewski, 2019. "Reduction of Heat Losses in a Pre-Insulated Network Located in Central Poland by Lowering the Operating Temperature of the Water and the Use of Egg-shaped Thermal Insulation: A Case Study," Energies, MDPI, vol. 12(11), pages 1-12, June.
- Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
- Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
- Matjaž Perpar & Zlatko Rek, 2021. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels," Energies, MDPI, vol. 14(18), pages 1-13, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
- Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
- Matjaž Perpar & Zlatko Rek, 2021. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels," Energies, MDPI, vol. 14(18), pages 1-13, September.
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Kuntuarova, Saltanat & Licklederer, Thomas & Huynh, Thanh & Zinsmeister, Daniel & Hamacher, Thomas & Perić, Vedran, 2024. "Design and simulation of district heating networks: A review of modeling approaches and tools," Energy, Elsevier, vol. 305(C).
- Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
- Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
- Meibodi, Saleh S. & Rees, Simon & Loveridge, Fleur, 2024. "Modeling district heating pipelines using a hybrid dynamic thermal network approach," Energy, Elsevier, vol. 290(C).
- Liu, Zhikai & Zhang, Huan & Wang, Yaran & Fan, Xianwang & You, Shijun & Jiang, Yan & Gao, Xinlei, 2023. "Optimization of hydraulic distribution using loop adjustment method in meshed district heating system with multiple heat sources," Energy, Elsevier, vol. 284(C).
- Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Vicidomini, Maria & Petrakopoulou, Fontina, 2024. "Thermoeconomic analysis of a novel topology of a 5th generation district energy network for a commercial user," Applied Energy, Elsevier, vol. 371(C).
- Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
- Moreno, Diana & Nielsen, Steffen & Sorknæs, Peter & Lund, Henrik & Thellufsen, Jakob Zinck & Mathiesen, Brian Vad, 2024. "Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities?," Energy, Elsevier, vol. 288(C).
- Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
- Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
- Revesz, Akos & Jones, Phil & Dunham, Chris & Davies, Gareth & Marques, Catarina & Matabuena, Rodrigo & Scott, Jim & Maidment, Graeme, 2020. "Developing novel 5th generation district energy networks," Energy, Elsevier, vol. 201(C).
- Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
- Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
- Rinaldi, Giulia & Lazaro, Ana & Delgado, Monica & Marin, Jose Maria & Verda, Vittorio, 2024. "Use of a low-cost phase change material emulsion in de-centralized thermal energy storage for district heating network enlargement," Energy, Elsevier, vol. 306(C).
- Pardo-Bosch, Francesc & Blanco, Ana & Mendoza, Nora & Libreros, Bibiana & Tejedor, Blanca & Pujadas, Pablo, 2023. "Sustainable deployment of energy efficient district heating: city business model," Energy Policy, Elsevier, vol. 181(C).
More about this item
Keywords
District heating; Cured-in-place pipe; Heat loss; Trenchless;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006540. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.