IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10125-d888876.html
   My bibliography  Save this article

Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario

Author

Listed:
  • Ronelly De Souza

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Emanuele Nadalon

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

  • Melchiorre Casisi

    (Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy)

  • Mauro Reini

    (Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy)

Abstract

This paper presents a study on the optimal district integration of a distributed generation (DG) system for an energy community (EC) and the implementation of sharing electricity (SE) between users. In recent years, the scientific community has frequently discussed potential pathways to achieve a 100% renewable energy source (RES) scenario, mainly through increasing electrification in all sectors. However, cooling-, heat-, and power-related technologies are expected to play a crucial role in the transition to a 100% RES scenario. For this reason, a research gap has been identified when it comes to an optimal SE solution and its effects on the optimal district heating and cooling network (DHCN) allowing both electrical and thermal integration among users. The considered system includes several components for each EC user, with a central unit and a DHCN connecting them all. Moreover, the users inside the EC can exchange electricity with each other through the existing electric grid. Furthermore, the EC considers cooling storage as well as heat storage systems. This paper applies the Mixed Integer Linear Programming (MILP) methodology for the single-objective optimization of an EC, in Northeast Italy, considering the total annual cost for owning, operating, and maintaining the entire system as the economic objective function. After the optimization, the total annual CO 2 emissions were calculated to evaluate the environmental effects of the different solutions. The energy system is optimized in different scenarios, considering the usage of renewable resources and different prices for the purchase of electricity and natural gas, as well as different prices for selling electricity. Results showed that, without changing utility prices, the implementation of SE allowed for a reduction of 85% in the total electricity bought from the grid by the EC. Moreover, the total annual EC costs and CO 2 emissions were reduced by 80 k€ and 280 t, respectively.

Suggested Citation

  • Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10125-:d:888876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
    2. Jacopo Vivian & Mattia Chinello & Angelo Zarrella & Michele De Carli, 2022. "Investigation on Individual and Collective PV Self-Consumption for a Fifth Generation District Heating Network," Energies, MDPI, vol. 15(3), pages 1-16, January.
    3. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    4. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
    5. Kong, Haining & Qi, Ershi & Li, Hui & Li, Gang & Zhang, Xing, 2010. "An MILP model for optimization of byproduct gases in the integrated iron and steel plant," Applied Energy, Elsevier, vol. 87(7), pages 2156-2163, July.
    6. Davide Pivetta & Sergio Rech & Andrea Lazzaretto, 2020. "Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar," Energies, MDPI, vol. 13(23), pages 1-33, November.
    7. Lamaison, Nicolas & Collette, Simon & Vallée, Mathieu & Bavière, Roland, 2019. "Storage influence in a combined biomass and power-to-heat district heating production plant," Energy, Elsevier, vol. 186(C).
    8. Duvignau, Romaric & Heinisch, Verena & Göransson, Lisa & Gulisano, Vincenzo & Papatriantafilou, Marina, 2021. "Benefits of small-size communities for continuous cost-optimization in peer-to-peer energy sharing," Applied Energy, Elsevier, vol. 301(C).
    9. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    10. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    11. Volkova, Anna & Mašatin, Vladislav & Siirde, Andres, 2018. "Methodology for evaluating the transition process dynamics towards 4th generation district heating networks," Energy, Elsevier, vol. 150(C), pages 253-261.
    12. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).
    13. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    14. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Vigants, Girts & Blumberga, Dagnija, 2016. "System dynamics model analysis of pathway to 4th generation district heating in Latvia," Energy, Elsevier, vol. 110(C), pages 85-94.
    15. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    16. Sorknæs, Peter & Østergaard, Poul Alberg & Thellufsen, Jakob Zinck & Lund, Henrik & Nielsen, Steffen & Djørup, Søren & Sperling, Karl, 2020. "The benefits of 4th generation district heating in a 100% renewable energy system," Energy, Elsevier, vol. 213(C).
    17. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    18. Delangle, Axelle & Lambert, Romain S.C. & Shah, Nilay & Acha, Salvador & Markides, Christos N., 2017. "Modelling and optimising the marginal expansion of an existing district heating network," Energy, Elsevier, vol. 140(P1), pages 209-223.
    19. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    20. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    21. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    2. Fabian Ochs & Mara Magni & Georgios Dermentzis, 2022. "Integration of Heat Pumps in Buildings and District Heating Systems—Evaluation on a Building and Energy System Level," Energies, MDPI, vol. 15(11), pages 1-33, May.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    5. Perpar, Matjaž & Rek, Zlatko, 2020. "Soil temperature gradient as a useful tool for small water leakage detection from district heating pipes in buried channels," Energy, Elsevier, vol. 201(C).
    6. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    7. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    8. Lorenzen, Peter & Alvarez-Bel, Carlos, 2022. "Variable cost evaluation of heating plants in district heating systems considering the temperature impact," Applied Energy, Elsevier, vol. 305(C).
    9. Gonzalez-Salazar, Miguel & Klossek, Julia & Dubucq, Pascal & Punde, Thomas, 2023. "Portfolio optimization in district heating: Merit order or mixed integer linear programming?," Energy, Elsevier, vol. 265(C).
    10. Kılkış, Şiir, 2021. "Transition towards urban system integration and benchmarking of an urban area to accelerate mitigation towards net-zero targets," Energy, Elsevier, vol. 236(C).
    11. Pakere, Ieva & Lauka, Dace & Blumberga, Dagnija, 2018. "Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant," Energy, Elsevier, vol. 154(C), pages 424-432.
    12. Formhals, Julian & Feike, Frederik & Hemmatabady, Hoofar & Welsch, Bastian & Sass, Ingo, 2021. "Strategies for a transition towards a solar district heating grid with integrated seasonal geothermal energy storage," Energy, Elsevier, vol. 228(C).
    13. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    14. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    15. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    16. Moallemi, A. & Arabkoohsar, A. & Pujatti, F.J.P. & Valle, R.M. & Ismail, K.A.R., 2019. "Non-uniform temperature district heating system with decentralized heat storage units, a reliable solution for heat supply," Energy, Elsevier, vol. 167(C), pages 80-91.
    17. Arabkoohsar, A., 2019. "Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks," Energy, Elsevier, vol. 170(C), pages 931-941.
    18. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    19. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    20. Kevin Sartor, 2017. "Simulation Models to Size and Retrofit District Heating Systems," Energies, MDPI, vol. 10(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10125-:d:888876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.