My bibliography
Save this item
Review on phase change materials (PCMs) for cold thermal energy storage applications
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shun-Hsiung Peng & Shang-Lien Lo, 2024. "An Economic Analysis of Energy Saving and Carbon Mitigation by the Use of Phase Change Materials for Cool Energy Storage for an Air Conditioning System—A Case Study," Energies, MDPI, vol. 17(4), pages 1-17, February.
- Nelson, James & Johnson, Nathan G. & Chinimilli, Prudhvi Tej & Zhang, Wenlong, 2019. "Residential cooling using separated and coupled precooling and thermal energy storage strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
- Yu, Zhi-Qiang & Feng, Yong-Liang & Zhou, Wen-Jing & Jin, Yu & Li, Ming-Jie & Li, Zeng-Yao & Tao, Wen-Quan, 2013. "Study on flow and heat transfer characteristics of composite porous material and its performance analysis by FSP and EDEP," Applied Energy, Elsevier, vol. 112(C), pages 1367-1375.
- López-Sabirón, Ana M. & Royo, Patricia & Ferreira, Victor J. & Aranda-Usón, Alfonso & Ferreira, Germán, 2014. "Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption," Applied Energy, Elsevier, vol. 135(C), pages 616-624.
- Pavangat, Athul & Bindhani, Omkar Satyaprakash & Naik, B. Kiran, 2023. "Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate," Energy, Elsevier, vol. 263(PE).
- Ma, F. & Zhang, P. & Shi, X.J., 2018. "Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics," Applied Energy, Elsevier, vol. 227(C), pages 643-654.
- Adekomaya, Oludaisi & Jamiru, Tamba & Sadiku, Rotimi & Huan, Zhongie, 2017. "Minimizing energy consumption in refrigerated vehicles through alternative external wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 89-93.
- Tafone, Alessio & Romagnoli, Alessandro, 2023. "A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage," Energy, Elsevier, vol. 281(C).
- Alzuwaid, F.A. & Ge, Y.T. & Tassou, S.A. & Sun, J., 2016. "The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation," Applied Energy, Elsevier, vol. 180(C), pages 76-85.
- Sebastian Ammann & Andreas Ammann & Rebecca Ravotti & Ludger J. Fischer & Anastasia Stamatiou & Jörg Worlitschek, 2018. "Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System," Energies, MDPI, vol. 11(9), pages 1-15, August.
- Belusko, M. & Sheoran, S. & Bruno, F., 2015. "Effectiveness of direct contact PCM thermal storage with a gas as the heat transfer fluid," Applied Energy, Elsevier, vol. 137(C), pages 748-757.
- Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.
- Haiming Long & Yunkun Lu & Liang Chang & Haifeng Zhang & Jingcen Zhang & Gaoqun Zhang & Junjie Hao, 2022. "Molecular Dynamics Simulation of Thermophysical Properties and the Microstructure of Na 2 CO 3 Heat Storage Materials," Energies, MDPI, vol. 15(19), pages 1-13, September.
- Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Anderson, Ryan & Shiri, Samira & Bindra, Hitesh & Morris, Jeffrey F., 2014. "Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles," Applied Energy, Elsevier, vol. 119(C), pages 521-529.
- Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
- Guelpa, Elisa & Deputato, Stefania & Verda, Vittorio, 2018. "Thermal request optimization in district heating networks using a clustering approach," Applied Energy, Elsevier, vol. 228(C), pages 608-617.
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
- Ling, Haoshu & Chen, Chao & Wei, Shen & Guan, Yong & Ma, Caiwen & Xie, Guangya & Li, Na & Chen, Ziguang, 2015. "Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time," Applied Energy, Elsevier, vol. 140(C), pages 329-337.
- Kousksou, T. & El Rhafiki, T. & Jamil, A. & Bruel, P. & Zeraouli, Y., 2013. "PCMs inside emulsions: Some specific aspects related to DSC (differential scanning calorimeter)-like configurations," Energy, Elsevier, vol. 56(C), pages 175-183.
- Wu, Wenhao & Huang, Xinyu & Li, Kai & Yao, Ruimin & Chen, Renjie & Zou, Ruqiang, 2017. "A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion," Applied Energy, Elsevier, vol. 190(C), pages 474-480.
- Fan, Li-Wu & Yao, Xiao-Li & Wang, Xiao & Wu, Yu-Yue & Liu, Xue-Ling & Xu, Xu & Yu, Zi-Tao, 2015. "Non-isothermal crystallization of aqueous nanofluids with high aspect-ratio carbon nano-additives for cold thermal energy storage," Applied Energy, Elsevier, vol. 138(C), pages 193-201.
- Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
- Ge, Y.Q. & Zhao, Y. & Zhao, C.Y., 2021. "Transient simulation and thermodynamic analysis of pumped thermal electricity storage based on packed-bed latent heat/cold stores," Renewable Energy, Elsevier, vol. 174(C), pages 939-951.
- Parameshwaran, R. & Deepak, K. & Saravanan, R. & Kalaiselvam, S., 2014. "Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 115(C), pages 320-330.
- López-Navarro, A. & Biosca-Taronger, J. & Corberán, J.M. & Peñalosa, C. & Lázaro, A. & Dolado, P. & Payá, J., 2014. "Performance characterization of a PCM storage tank," Applied Energy, Elsevier, vol. 119(C), pages 151-162.
- Chandrasekaran, P. & Cheralathan, M. & Velraj, R., 2015. "Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system – An experimental study," Energy, Elsevier, vol. 90(P1), pages 807-813.
- Liu, Shengchun & Hao, Ling & Rao, Zhiming & Zhang, Xingxing, 2017. "Experimental study on crystallization process and prediction for the latent heat of ice slurry generation based sodium chloride solution," Applied Energy, Elsevier, vol. 185(P2), pages 1948-1953.
- Cabaleiro, D. & Agresti, F. & Fedele, L. & Barison, S. & Hermida-Merino, C. & Losada-Barreiro, S. & Bobbo, S. & Piñeiro, M.M., 2022. "Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
- Zhang, P. & Meng, Z.N. & Zhu, H. & Wang, Y.L. & Peng, S.P., 2017. "Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam," Applied Energy, Elsevier, vol. 185(P2), pages 1971-1983.
- Ruddell, Benjamin L. & Salamanca, Francisco & Mahalov, Alex, 2014. "Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage," Applied Energy, Elsevier, vol. 134(C), pages 35-44.
- Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.
- Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
- Guillermo Bejarano & João M. Lemos & Javier Rico-Azagra & Francisco R. Rubio & Manuel G. Ortega, 2022. "Energy Management of Refrigeration Systems with Thermal Energy Storage Based on Non-Linear Model Predictive Control," Mathematics, MDPI, vol. 10(17), pages 1-27, September.
- Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
- Ahn, Jae Hwan & Kim, Hoon & Jeon, Yongseok & Kwon, Ki Hyun, 2022. "Performance characteristics of mobile cooling system utilizing ice thermal energy storage with direct contact discharging for a refrigerated truck," Applied Energy, Elsevier, vol. 308(C).
- Ruziewicz, Adam & Czajkowski, Cezary & Nowak, Andrzej I. & Rak, Józef & Zieliński, Norbert & Pietrowicz, Sławomir, 2022. "Novel industrial gas filling station with an internal cooling system dedicated for speeding up cylinder charging process - Energy and exergy analysis," Energy, Elsevier, vol. 254(PB).
- Cong, L. & Zou, B. & Palacios, A. & Navarro, M.E. & Qiao, G. & Ding, Y., 2022. "Thickening and gelling agents for formulation of thermal energy storage materials – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Bi, Yuehong & Qin, Lifeng & Guo, Jimeng & Li, Hongyan & Zang, Gaoli, 2020. "Performance analysis of solar air conditioning system based on the independent-developed solar parabolic trough collector," Energy, Elsevier, vol. 196(C).
- Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
- Sathishkumar, A. & Cheralathan, M., 2023. "Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: An experimental study," Energy, Elsevier, vol. 263(PB).
- Stanković, Stanislava B. & Kyriacou, Panayiotis A., 2013. "Improved measurement technique for the characterization of organic and inorganic phase change materials using the T-history method," Applied Energy, Elsevier, vol. 109(C), pages 433-440.
- Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
- Luo, Na & Hong, Tianzhen & Li, Hui & Jia, Ruoxi & Weng, Wenguo, 2017. "Data analytics and optimization of an ice-based energy storage system for commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 459-475.
- Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
- Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
- Wang, Guangyao & Ha, Dong Sam & Wang, Kevin G., 2019. "A scalable environmental thermal energy harvester based on solid/liquid phase-change materials," Applied Energy, Elsevier, vol. 250(C), pages 1468-1480.
- Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
- Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
- Yang, Xiaohu & Feng, Shangsheng & Zhang, Qunli & Chai, Yue & Jin, Liwen & Lu, Tian Jian, 2017. "The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage," Applied Energy, Elsevier, vol. 194(C), pages 508-521.
- Xinyu Meng & Yijian He & Lijuan He & Chenlei Zhao & Lifang Wang & Wenxi You & Jingbo Zhu, 2024. "A Review of the Energy-Saving Potential of Phase Change Material-Based Cascaded Refrigeration Systems in Chinese Food Cold Chain Industry," Energies, MDPI, vol. 17(19), pages 1-28, September.
- Barthwal, Mohit & Dhar, Atul & Powar, Satvasheel, 2021. "The techno-economic and environmental analysis of genetic algorithm (GA) optimized cold thermal energy storage (CTES) for air-conditioning applications," Applied Energy, Elsevier, vol. 283(C).
- Zhou, H. & de Sera, I.E.E. & Infante Ferreira, C.A., 2015. "Modelling and experimental validation of a fluidized bed based CO2 hydrate cold storage system," Applied Energy, Elsevier, vol. 158(C), pages 433-445.
- Dufour, Thomas & Hoang, Hong Minh & Oignet, Jérémy & Osswald, Véronique & Clain, Pascal & Fournaison, Laurence & Delahaye, Anthony, 2017. "Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 641-652.
- Barreneche, Camila & Fernández, Ana Inés & Cabeza, Luisa F. & Cuypers, Ruud, 2015. "Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite," Applied Energy, Elsevier, vol. 137(C), pages 726-730.
- Ferrer, Gerard & Solé, Aran & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2015. "Review on the methodology used in thermal stability characterization of phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 665-685.
- Comodi, Gabriele & Carducci, Francesco & Sze, Jia Yin & Balamurugan, Nagarajan & Romagnoli, Alessandro, 2017. "Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies," Energy, Elsevier, vol. 121(C), pages 676-694.
- He, Hongtao & Zhao, Pin & Yue, Qinyan & Gao, Baoyu & Yue, Dongting & Li, Qian, 2015. "A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation," Renewable Energy, Elsevier, vol. 76(C), pages 45-52.
- Lillo-Bravo, I. & Bobadilla, M.A. & Moreno-Tejera, S. & Silva-Pérez, M., 2020. "A novel storage system for cooling stand-alone photovoltaic installations," Renewable Energy, Elsevier, vol. 155(C), pages 23-37.
- Juan Shi & Hua Xue & Zhenqian Chen & Li Sun, 2019. "Numerical Study of a New Solar Vacuum Tube Integrating with Phase Change Material," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
- Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
- Adhiyaman Ilangovan & Samia Hamdane & Pedro D. Silva & Pedro D. Gaspar & Luís Pires, 2022. "Promising and Potential Applications of Phase Change Materials in the Cold Chain: A Systematic Review," Energies, MDPI, vol. 15(20), pages 1-15, October.
- Liu, Zhen-hua & Zheng, Bao-chen & Wang, Qian & Li, Suang-Suang, 2015. "Study on the thermal storage performance of a gravity-assisted heat-pipe thermal storage unit with granular high-temperature phase-change materials," Energy, Elsevier, vol. 81(C), pages 754-765.
- Hussein J. Akeiber & Seyed Ehsan Hosseini & Mazlan A. Wahid & Hasanen M. Hussen & Abdulrahman Th. Mohammad, 2016. "Phase Change Materials-Assisted Heat Flux Reduction: Experiment and Numerical Analysis," Energies, MDPI, vol. 9(1), pages 1-17, January.
- Figueiredo, António & Vicente, Romeu & Lapa, José & Cardoso, Claudino & Rodrigues, Fernanda & Kämpf, Jérôme, 2017. "Indoor thermal comfort assessment using different constructive solutions incorporating PCM," Applied Energy, Elsevier, vol. 208(C), pages 1208-1221.
- Lu, W. & Tassou, S.A., 2013. "Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications," Applied Energy, Elsevier, vol. 112(C), pages 1376-1382.
- Vélez, C. & Khayet, M. & Ortiz de Zárate, J.M., 2015. "Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane," Applied Energy, Elsevier, vol. 143(C), pages 383-394.
- Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
- Veerakumar, C. & Sreekumar, A., 2020. "Thermo-physical investigation and experimental discharge characteristics of lauryl alcohol as a potential phase change material for thermal management in buildings," Renewable Energy, Elsevier, vol. 148(C), pages 492-503.
- Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
- Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
- Liu, Shengchun & Li, Hailong & Song, Mengjie & Dai, Baomin & Sun, Zhili, 2018. "Impacts on the solidification of water on plate surface for cold energy storage using ice slurry," Applied Energy, Elsevier, vol. 227(C), pages 284-293.
- Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis of a cascaded cold storage unit using multiple PCMs," Energy, Elsevier, vol. 143(C), pages 448-457.
- Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
- Barreneche, Camila & Navarro, M. Elena & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale," Applied Energy, Elsevier, vol. 109(C), pages 428-432.
- Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
- Scharinger-Urschitz, Georg & Schwarzmayr, Paul & Walter, Heimo & Haider, Markus, 2020. "Partial cycle operation of latent heat storage with finned tubes," Applied Energy, Elsevier, vol. 280(C).
- Xu, H.J. & Zhao, C.Y., 2016. "Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model," Renewable Energy, Elsevier, vol. 86(C), pages 228-237.
- Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
- Basu, Dipankar N. & Ganguly, A., 2016. "Solar thermal–photovoltaic powered potato cold storage – Conceptual design and performance analyses," Applied Energy, Elsevier, vol. 165(C), pages 308-317.
- Li, Yantong & Nord, Natasa & Yin, Huibin, 2023. "An investigation of using CO2 heat pumps to charge PCM storage tank for domestic use," Renewable Energy, Elsevier, vol. 218(C).
- Rathgeber, Christoph & Schmit, Henri & Hennemann, Peter & Hiebler, Stefan, 2014. "Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45°C," Applied Energy, Elsevier, vol. 136(C), pages 7-13.
- Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
- Sarı, Ahmet & Hekimoğlu, Gökhan & Tyagi, V.V., 2020. "Low cost and eco-friendly wood fiber-based composite phase change material: Development, characterization and lab-scale thermoregulation performance for thermal energy storage," Energy, Elsevier, vol. 195(C).
- Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
- Colarossi, Daniele & Tagliolini, Eleonora & Amato, Alessia & Principi, Paolo, 2022. "Life cycle assessment and circularity evaluation of a PV panel integrated with phase change material," Renewable Energy, Elsevier, vol. 201(P2), pages 150-156.
- Shun-Hsiung Peng & Shang-Lien Lo, 2023. "Hybrid (Optimal) Selection Model for Phase Change Materials Used in the Cold Energy Storage of Air Conditioning Systems," Energies, MDPI, vol. 17(1), pages 1-15, December.
- Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
- Qiu, Lin & Ouyang, Yuxin & Feng, Yanhui & Zhang, Xinxin, 2019. "Review on micro/nano phase change materials for solar thermal applications," Renewable Energy, Elsevier, vol. 140(C), pages 513-538.
- Wang, X.J. & Li, X.F. & Xu, Y.H. & Zhu, D.S., 2014. "Thermal energy storage characteristics of Cu–H2O nanofluids," Energy, Elsevier, vol. 78(C), pages 212-217.
- Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Jian, Yongfang & Falcoz, Quentin & Neveu, Pierre & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2015. "Design and optimization of solid thermal energy storage modules for solar thermal power plant applications," Applied Energy, Elsevier, vol. 139(C), pages 30-42.
- Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
- Golestaneh, S.I. & Mosallanejad, A. & Karimi, G. & Khorram, M. & Khashi, M., 2016. "Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method," Applied Energy, Elsevier, vol. 182(C), pages 409-417.
- Chandrasekaran, P. & Cheralathan, M. & Velraj, R., 2015. "Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule – An experimental study," Energy, Elsevier, vol. 90(P1), pages 508-515.
- Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
- Borri, Emiliano & Sze, Jia Yin & Tafone, Alessio & Romagnoli, Alessandro & Li, Yongliang & Comodi, Gabriele, 2020. "Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage," Applied Energy, Elsevier, vol. 275(C).
- Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
- Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
- Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
- Amir Ali & Anas Issa & Ahmed Elshaer, 2024. "A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings," Sustainability, MDPI, vol. 16(20), pages 1-42, October.
- Chong Zhang & Luwei Yang & Wenye Lin & Juan Wei & Fengjun Guo, 2022. "Performance Enhancement and Life-Cycle Cost Savings of Supercooled Water Ice Slurry Generation Systems Using Heat Regeneration," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
- Kong, Xiangfei & Jie, Pengfei & Yao, Chengqiang & Liu, Yun, 2017. "Experimental study on thermal performance of phase change material passive and active combined using for building application in winter," Applied Energy, Elsevier, vol. 206(C), pages 293-302.
- Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
- Tay, N.H.S. & Belusko, M. & Liu, M. & Bruno, F., 2015. "Investigation of the effect of dynamic melting in a tube-in-tank PCM system using a CFD model," Applied Energy, Elsevier, vol. 137(C), pages 738-747.
- Fang, Yutang & Liu, Xin & Liang, Xianghui & Liu, Hong & Gao, Xuenong & Zhang, Zhengguo, 2014. "Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 132(C), pages 551-556.
- Liang, Haobin & Liu, Liu & Zhong, Ziwen & Gan, Yixiang & Wu, Jian-Yong & Niu, Jianlei, 2022. "Towards idealized thermal stratification in a novel phase change emulsion storage tank," Applied Energy, Elsevier, vol. 310(C).
- Wang, Fangxian & Zhang, Chao & Liu, Jian & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage," Applied Energy, Elsevier, vol. 188(C), pages 97-106.
- Li, Yanchen & Wang, Beibei & Zhang, Weiye & Zhao, Junqi & Fang, Xiaoyang & Sun, Jingmeng & Xia, Rongqi & Guo, Hongwu & Liu, Yi, 2022. "Processing wood into a phase change material with high solar-thermal conversion efficiency by introducing stable polyethylene glycol-based energy storage polymer," Energy, Elsevier, vol. 254(PA).
- Kalapala, Lokesh & Devanuri, Jaya Krishna, 2020. "Energy and exergy analyses of latent heat storage unit positioned at different orientations – An experimental study," Energy, Elsevier, vol. 194(C).
- Al-Shannaq, Refat & Young, Brent & Farid, Mohammed, 2019. "Cold energy storage in a packed bed of novel graphite/PCM composite spheres," Energy, Elsevier, vol. 171(C), pages 296-305.
- Lin, Niangzhi & Li, Chuanchang & Zhang, Dongyao & Li, Yaxi & Chen, Jian, 2022. "Emerging phase change cold storage materials derived from sodium sulfate decahydrate," Energy, Elsevier, vol. 245(C).
- Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
- Simonsen, Galina & Ravotti, Rebecca & O'Neill, Poppy & Stamatiou, Anastasia, 2023. "Biobased phase change materials in energy storage and thermal management technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Almas Sheriyev & Shazim Ali Memon & Indira Adilkhanova & Jong Kim, 2021. "Effect of Phase Change Materials on the Thermal Performance of Residential Building Located in Different Cities of a Tropical Rainforest Climate Zone," Energies, MDPI, vol. 14(9), pages 1-22, May.
- Huyu Li & Guojun Yu & Huijin Xu & Xue Han & Huihao Liu, 2023. "A Review of the Mathematical Models for the Flow and Heat Transfer of Microencapsulated Phase Change Slurry (MEPCS)," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
- Devaux, Paul & Farid, Mohammed Mehdi, 2017. "Benefits of PCM underfloor heating with PCM wallboards for space heating in winter," Applied Energy, Elsevier, vol. 191(C), pages 593-602.
- Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
- Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
- Rocha, Thiago Torres Martins & Teggar, Mohamed & Trevizoli, Paulo Vinicius & de Oliveira, Raphael Nunes, 2023. "Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
- Jia, Lisi & Peng, Lan & Chen, Ying & Mo, Songping & Li, Xing, 2014. "Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate," Applied Energy, Elsevier, vol. 124(C), pages 248-255.
- Liang Guo & Hong Ye, 2019. "Numerical and Experimental Study on a High-Power Cold Achieving Process of a Coil-Plate Ice-Storage System," Energies, MDPI, vol. 12(21), pages 1-11, October.
- Wang, Zhangyuan & Qiu, Feng & Yang, Wansheng & Zhao, Xudong, 2015. "Applications of solar water heating system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 645-652.
- Robert Sekret & Przemysław Starzec, 2021. "Developing a Cold Accumulator with a Capsule Bed Containing Water as a Phase-Change Material," Energies, MDPI, vol. 14(9), pages 1-18, May.
- Chandrasekaran, P. & Cheralathan, M. & Kumaresan, V. & Velraj, R., 2014. "Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system," Energy, Elsevier, vol. 72(C), pages 636-642.
- Soares, N. & Gaspar, A.R. & Santos, P. & Costa, J.J., 2015. "Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials," Applied Energy, Elsevier, vol. 142(C), pages 192-205.
- Luís Sousa Rodrigues & Daniel Lemos Marques & Jorge Augusto Ferreira & Vítor António Ferreira Costa & Nelson Dias Martins & Fernando José Neto Da Silva, 2022. "The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 15(20), pages 1-36, October.
- Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Zhao, Pin & Yue, Qinyan & He, Hongtao & Gao, Baoyu & Wang, Yan & Li, Qian, 2014. "Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions," Applied Energy, Elsevier, vol. 115(C), pages 483-490.
- Tian, Fengguo & Zhan, Xiaoqiang & He, Hao & Liu, Shulei & Yang, Tao & Xiao, Honghai, 2024. "A modified lumped capacitance method for transient heat transfer in a stirred tank with non-Newtonian fluid," Applied Energy, Elsevier, vol. 368(C).
- Tang, Song-Zhen & He, Yan & He, Ya-Ling & Wang, Fei-Long, 2020. "Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas," Applied Energy, Elsevier, vol. 266(C).
- He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
- Mazzoni, Stefano & Ooi, Sean & Nastasi, Benedetto & Romagnoli, Alessandro, 2019. "Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems," Applied Energy, Elsevier, vol. 254(C).
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
- Mahmoud, Saad & Tang, Aaron & Toh, Chin & AL-Dadah, Raya & Soo, Sein Leung, 2013. "Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks," Applied Energy, Elsevier, vol. 112(C), pages 1349-1356.
- Zhang, P. & Ma, F. & Xiao, X., 2016. "Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system," Applied Energy, Elsevier, vol. 173(C), pages 255-271.
- Cristiana Croitoru & Florin Bode & Răzvan Calotă & Charles Berville & Matei Georgescu, 2024. "Harnessing Nanomaterials for Enhanced Energy Efficiency in Transpired Solar Collectors: A Review of Their Integration in Phase-Change Materials," Energies, MDPI, vol. 17(5), pages 1-18, March.
- Eneja Osterman & Claudio Del Pero & Eva Zavrl & Fabrizio Leonforte & Niccolò Aste & Uroš Stritih, 2023. "Phase-Change Material Thermal Energy Storage for the Smart Retrofitting of Existing Buildings," Energies, MDPI, vol. 16(17), pages 1-13, August.
- Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications," Renewable Energy, Elsevier, vol. 68(C), pages 452-458.
- Shi, X.J. & Zhang, P., 2013. "A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system," Applied Energy, Elsevier, vol. 112(C), pages 1393-1402.
- Nagamani, Gowrisetti & Naik, B. Kiran & Agarwal, Sumit, 2024. "Energetic and exergetic performance analyses of mobile thermochemical energy storage system employing industrial waste heat," Energy, Elsevier, vol. 288(C).
- Hlanze, Philani & Elhefny, Aly & Jiang, Zhimin & Cai, Jie & Shabgard, Hamidreza, 2022. "In-duct phase change material-based energy storage to enhance building demand flexibility," Applied Energy, Elsevier, vol. 310(C).
- Morales-Ruiz, S. & Rigola, J. & Oliet, C. & Oliva, A., 2016. "Analysis and design of a drain water heat recovery storage unit based on PCM plates," Applied Energy, Elsevier, vol. 179(C), pages 1006-1019.
- Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
- Szabó, Gábor L. & Kalmár, Ferenc, 2019. "Investigation of energy and exergy performances of radiant cooling systems in buildings – A design approach," Energy, Elsevier, vol. 185(C), pages 449-462.
- Li, Niansi & Cao, Xuhui & Zhang, Guoji & Wang, Yiting & Hu, Xuan & Liu, Jin & Yu, Bendong & Ji, Jie & Liu, Xiaoyong, 2024. "The experimental and numerical study on a novel all-day PCM thermal-catalytic purified Trombe wall in winter," Energy, Elsevier, vol. 299(C).
- Nikpourian, Hediyeh & Bahramian, Ahmad Reza & Abdollahi, Mahdi, 2020. "On the thermal performance of a novel PCM nanocapsule: The effect of core/shell," Renewable Energy, Elsevier, vol. 151(C), pages 322-331.
- Tan, Pepe & Lindberg, Patrik & Eichler, Kaia & Löveryd, Per & Johansson, Pär & Kalagasidis, Angela Sasic, 2020. "Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building," Applied Energy, Elsevier, vol. 276(C).
- Liu, Ming & Saman, Wasim & Bruno, Frank, 2014. "Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit," Applied Energy, Elsevier, vol. 132(C), pages 226-235.
- Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
- Hobold, Gustavo M. & da Silva, Alexandre K., 2017. "Critical phenomena and their effect on thermal energy storage in supercritical fluids," Applied Energy, Elsevier, vol. 205(C), pages 1447-1458.
- Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
- Zsembinszki, Gabriel & Solé, Cristian & Castell, Albert & Pérez, Gabriel & Cabeza, Luisa F., 2013. "The use of phase change materials in fish farms: A general analysis," Applied Energy, Elsevier, vol. 109(C), pages 488-496.
- Sciacovelli, A. & Gagliardi, F. & Verda, V., 2015. "Maximization of performance of a PCM latent heat storage system with innovative fins," Applied Energy, Elsevier, vol. 137(C), pages 707-715.
- Yang, Kun & Zhu, Neng & Chang, Chen & Wang, Daquan & Yang, Shan & Ma, Shengming, 2018. "A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study," Energy, Elsevier, vol. 165(PB), pages 1085-1096.
- Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
- He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
- Bi, Yuehong & Liu, Xiao & Jiang, Minghe, 2014. "Exergy analysis of a gas-hydrate cool storage system," Energy, Elsevier, vol. 73(C), pages 908-915.
- Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
- Angel G. Fernández & Luis González-Fernández & Yaroslav Grosu & Jalel Labidi, 2022. "Physicochemical Characterization of Phase Change Materials for Industrial Waste Heat Recovery Applications," Energies, MDPI, vol. 15(10), pages 1-12, May.
- Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
- Anastasia Stamatiou & Lukas Müller & Roger Zimmermann & Jamie Hillis & David Oliver & Kate Fisher & Maurizio Zaglio & Jörg Worlitschek, 2021. "Experimental Characterization of Phase Change Materials for Refrigeration Processes," Energies, MDPI, vol. 14(11), pages 1-14, May.
- Zauner, Christoph & Hengstberger, Florian & Etzel, Mark & Lager, Daniel & Hofmann, Rene & Walter, Heimo, 2016. "Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM," Applied Energy, Elsevier, vol. 179(C), pages 237-246.
- M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- Sitong Liu & Huanmei Yuan & Dengti Hu & Tonghe Li & Hao Bai, 2024. "Effect of Dropping Speed of Reducing Agent on the Preparation of LA/Ag Phase-Change Nanocapsules," Energies, MDPI, vol. 17(4), pages 1-12, February.
- Cheng, Chuanxiao & Wang, Fan & Tian, Yongjia & Wu, Xuehong & Zheng, Jili & Zhang, Jun & Li, Longwei & Yang, Penglin & Zhao, Jiafei, 2020. "Review and prospects of hydrate cold storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Cao, Fangyu & Yang, Bao, 2014. "Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure," Applied Energy, Elsevier, vol. 113(C), pages 1512-1518.
- Liu, Yushi & Yang, Yingzi, 2018. "Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide," Renewable Energy, Elsevier, vol. 115(C), pages 734-740.
- Zhu, Kai & Li, Xueqiang & Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2018. "Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses," Applied Energy, Elsevier, vol. 216(C), pages 348-357.