Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.08.146
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
- Zeng, Ruolang & Wang, Xin & Chen, Binjiao & Zhang, Yinping & Niu, Jianlei & Wang, Xichun & Di, Hongfa, 2009. "Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux," Applied Energy, Elsevier, vol. 86(12), pages 2661-2670, December.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Qiu, Zhongzhu & Ma, Xiaoli & Zhao, Xudong & Li, Peng & Ali, Samira, 2016. "Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system," Applied Energy, Elsevier, vol. 165(C), pages 260-271.
- Shi, X.J. & Zhang, P., 2016. "Conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes," Energy, Elsevier, vol. 99(C), pages 58-68.
- Ma, Bingqian & Li, Jianqiang & Xu, Zhe & Peng, Zhijian, 2014. "Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method," Applied Energy, Elsevier, vol. 132(C), pages 568-574.
- Zhang, P. & Ma, Z.W. & Wang, R.Z., 2010. "An overview of phase change material slurries: MPCS and CHS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 598-614, February.
- Chen, Zhi & Fang, Guiyin, 2011. "Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4624-4632.
- Nomura, Takahiro & Sheng, Nan & Zhu, Chunyu & Saito, Genki & Hanzaki, Daiki & Hiraki, Takehito & Akiyama, Tomohiro, 2017. "Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation," Applied Energy, Elsevier, vol. 188(C), pages 9-18.
- Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
- Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2010. "Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications," Applied Energy, Elsevier, vol. 87(2), pages 620-628, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
- Yang, Kairan & Guo, Weimin & Zhang, Peng, 2024. "Cold energy transport and release characteristics of CO2+TBAB hydrate slurry flow with hydrate dissociation," Energy, Elsevier, vol. 294(C).
- Qi, Di & Xie, Wenbin & Zhao, Chuangyao & Song, Bingye & Li, Angui, 2023. "Evaluation of the integrated performance for floor heating using micro-encapsulated phase change material slurry," Renewable Energy, Elsevier, vol. 217(C).
- Li, Qi & Qiao, Geng & Mura, Ernesto & Li, Chuan & Fischer, Ludger & Ding, Yulong, 2020. "Experimental and numerical studies of a fatty acid based phase change dispersion for enhancing cooling of high voltage electrical devices," Energy, Elsevier, vol. 198(C).
- Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
- Li, Sheng & Gao, Jinshuang & Zhang, Lizhe & Wu, Fan & Zhao, Yazhou & Zhang, Xuejun, 2024. "Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer," Renewable Energy, Elsevier, vol. 227(C).
- Li, Sheng & Gao, Jinshuang & Zhang, Lizhe & Zhao, Yazhou & Zhang, Xuejun, 2024. "Exploration of dual-phase change coupled heat transfer in solar regenerative evaporator," Energy, Elsevier, vol. 293(C).
- Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Huyu Li & Guojun Yu & Huijin Xu & Xue Han & Huihao Liu, 2023. "A Review of the Mathematical Models for the Flow and Heat Transfer of Microencapsulated Phase Change Slurry (MEPCS)," Energies, MDPI, vol. 16(6), pages 1-21, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
- Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
- Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
- Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
- Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
- Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
- Yang, Liu & Liu, Shuli & Zheng, Hongfei, 2019. "A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
- Zhang, P. & Ma, Z.W., 2012. "An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5021-5058.
- Lu, W. & Tassou, S.A., 2013. "Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications," Applied Energy, Elsevier, vol. 112(C), pages 1376-1382.
- Huyu Li & Guojun Yu & Huijin Xu & Xue Han & Huihao Liu, 2023. "A Review of the Mathematical Models for the Flow and Heat Transfer of Microencapsulated Phase Change Slurry (MEPCS)," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
- Ferrer, Gerard & Solé, Aran & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2015. "Review on the methodology used in thermal stability characterization of phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 665-685.
- Fang, Yutang & Liu, Xin & Liang, Xianghui & Liu, Hong & Gao, Xuenong & Zhang, Zhengguo, 2014. "Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 132(C), pages 551-556.
- Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
- Al-Shannaq, Refat & Young, Brent & Farid, Mohammed, 2019. "Cold energy storage in a packed bed of novel graphite/PCM composite spheres," Energy, Elsevier, vol. 171(C), pages 296-305.
- Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
- Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Americano da Costa, Marcus V. & Pasamontes, Manuel & Normey-Rico, Julio E. & Guzmán, José L. & Berenguel, Manuel, 2013. "Viability and application of ethanol production coupled with solar cooling," Applied Energy, Elsevier, vol. 102(C), pages 501-509.
More about this item
Keywords
Micro-encapsulated phase change material slurry; Eulerian-Eulerian model; Flow and heat transfer; Energy transport;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:643-654. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.