IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924008663.html
   My bibliography  Save this article

A modified lumped capacitance method for transient heat transfer in a stirred tank with non-Newtonian fluid

Author

Listed:
  • Tian, Fengguo
  • Zhan, Xiaoqiang
  • He, Hao
  • Liu, Shulei
  • Yang, Tao
  • Xiao, Honghai

Abstract

This work is focused on the transient heat transfer of non-Newtonian fluid in a coil-cooled stirred tank through experimental and numerical approaches. A modified lumped capacitance method was established for a more accurate definition of the time constant at a limited coolant flowrate. The modified method breaks down the time constant into two terms: the first term is based on the system heat transfer capability and the second one on the coolant heat transport capability. Limited by the assumption of an infinite cooling capability, the simple lumped capacitance method attributes all of the time constant solely to the first term. The significant difference between the two models results in fundamentally different derivations used to calculate the overall heat transfer coefficient. Theoretical analysis indicates that the modified method align harmoniously with its original form. The results manifest that: (1) Within the operating range of all tests, the second term contributes 26.5–12.9% to the total time constant as coolant flowrate increases, making it a significant factor that should not be overlooked. (2) The simple method underestimates the overall heat transfer capability by 15.4–29.2% compared to the modified one. It subsequently underestimates the coil external and internal convection coefficients by up to 12.8% and 70.6% in comparison to the modified model, respectively, compared to the modified model. (3) The CFD-predicted overall heat transfer coefficient, coil external convection coefficient, and coil internal convection coefficient deviate by a maximum of 15.2%, 7.2%, and 32.1% respectively compared to the experimental values obtained through the modified lumped capacitance method. By the way, the CFD-predicted coil internal convection coefficient closely aligns with the Nusselt correlation for straight tubes adjusted using Cr = 1.2. (4) A thorough analysis of CFD results reveals complex dynamics in stirred tanks, such as viscosity distribution patterns and areas of limited mass and heat exchange between middle and bottom impellers. This deep understanding enables root cause analysis crucial for optimizing configurations or designing uniquely structured tanks. (5) The revised lumped capacitance method expands on its original version by transitioning from assuming infinite cooling to accounting for limited transient cooling capacity. This shift is more realistic and crucial for thermal management and process control.

Suggested Citation

  • Tian, Fengguo & Zhan, Xiaoqiang & He, Hao & Liu, Shulei & Yang, Tao & Xiao, Honghai, 2024. "A modified lumped capacitance method for transient heat transfer in a stirred tank with non-Newtonian fluid," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008663
    DOI: 10.1016/j.apenergy.2024.123483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Dufour, Thomas & Hoang, Hong Minh & Oignet, Jérémy & Osswald, Véronique & Clain, Pascal & Fournaison, Laurence & Delahaye, Anthony, 2017. "Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 641-652.
    3. Delgado, M. & Lázaro, A. & Mazo, J. & Peñalosa, C. & Marín, J.M. & Zalba, B., 2017. "Experimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system," Energy, Elsevier, vol. 138(C), pages 590-601.
    4. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Lee, Kyoung Ok, 2016. "Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs)," Applied Energy, Elsevier, vol. 162(C), pages 1453-1461.
    5. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    6. Sangare, Diakaridia & Bostyn, Stéphane & Moscosa-Santillan, Mario & Gökalp, Iskender, 2021. "Hydrodynamics, heat transfer and kinetics reaction of CFD modeling of a batch stirred reactor under hydrothermal carbonization conditions," Energy, Elsevier, vol. 219(C).
    7. Zhang, Jingxin & Mao, Liwei & Nithya, Karthikeyan & Loh, Kai-Chee & Dai, Yanjun & He, Yiliang & Wah Tong, Yen, 2019. "Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste," Applied Energy, Elsevier, vol. 249(C), pages 28-36.
    8. Tao, Bing & Alessi, Anna M. & Zhang, Yue & Chong, James P.J. & Heaven, Sonia & Banks, Charles J., 2019. "Simultaneous biomethanisation of endogenous and imported CO2 in organically loaded anaerobic digesters," Applied Energy, Elsevier, vol. 247(C), pages 670-681.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & He, Pinjing & Duan, Haowen & Shao, Liming & Lü, Fan, 2021. "Low calcium dosage favors methanation of long-chain fatty acids," Applied Energy, Elsevier, vol. 285(C).
    2. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Zhao, Ning & You, Fengqi, 2021. "Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns," Applied Energy, Elsevier, vol. 282(PA).
    4. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    5. Sun, Peng & Yun, Teng & Chen, Zhe, 2021. "Multi-objective robust optimization of multi-energy microgrid with waste treatment," Renewable Energy, Elsevier, vol. 178(C), pages 1198-1210.
    6. Golestaneh, S.I. & Mosallanejad, A. & Karimi, G. & Khorram, M. & Khashi, M., 2016. "Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method," Applied Energy, Elsevier, vol. 182(C), pages 409-417.
    7. Kousksou, T. & El Rhafiki, T. & Jamil, A. & Bruel, P. & Zeraouli, Y., 2013. "PCMs inside emulsions: Some specific aspects related to DSC (differential scanning calorimeter)-like configurations," Energy, Elsevier, vol. 56(C), pages 175-183.
    8. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    9. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    10. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    11. Guo, Shaopeng & Liu, Qibin & Zhao, Jun & Jin, Guang & Wang, Xiaotong & Lang, Zhongmin & He, Wenxiu & Gong, Zhijun, 2017. "Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes," Applied Energy, Elsevier, vol. 205(C), pages 703-709.
    12. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    13. Elena Rossi & Isabella Pecorini & Giovanni Ferrara & Renato Iannelli, 2022. "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    14. Wang, X.J. & Li, X.F. & Xu, Y.H. & Zhu, D.S., 2014. "Thermal energy storage characteristics of Cu–H2O nanofluids," Energy, Elsevier, vol. 78(C), pages 212-217.
    15. Li, Yanchen & Wang, Beibei & Zhang, Weiye & Zhao, Junqi & Fang, Xiaoyang & Sun, Jingmeng & Xia, Rongqi & Guo, Hongwu & Liu, Yi, 2022. "Processing wood into a phase change material with high solar-thermal conversion efficiency by introducing stable polyethylene glycol-based energy storage polymer," Energy, Elsevier, vol. 254(PA).
    16. Al-Shannaq, Refat & Young, Brent & Farid, Mohammed, 2019. "Cold energy storage in a packed bed of novel graphite/PCM composite spheres," Energy, Elsevier, vol. 171(C), pages 296-305.
    17. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    18. Zhu, Kai & Li, Xueqiang & Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2018. "Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses," Applied Energy, Elsevier, vol. 216(C), pages 348-357.
    19. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    20. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.