Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.08.136
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
- Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
- Li, Min & Kao, Hongtao & Wu, Zhishen & Tan, Jinmiao, 2011. "Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials," Applied Energy, Elsevier, vol. 88(5), pages 1606-1612, May.
- Chen, Weiwang & Weng, Wenguo, 2016. "Ultrafine lauric–myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning," Applied Energy, Elsevier, vol. 173(C), pages 168-176.
- Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
- Li, Min & Wu, Zhishen & Kao, Hongtao, 2011. "Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials," Applied Energy, Elsevier, vol. 88(9), pages 3125-3132.
- Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
- Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
- Zhao, Pin & Yue, Qinyan & He, Hongtao & Gao, Baoyu & Wang, Yan & Li, Qian, 2014. "Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions," Applied Energy, Elsevier, vol. 115(C), pages 483-490.
- Cai, Yibing & Ke, Huizhen & Dong, Ju & Wei, Qufu & Lin, Jiulong & Zhao, Yong & Song, Lei & Hu, Yuan & Huang, Fenglin & Gao, Weidong & Fong, Hao, 2011. "Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials," Applied Energy, Elsevier, vol. 88(6), pages 2106-2112, June.
- Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
- Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
- Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Lee, Kyoung Ok, 2016. "Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs)," Applied Energy, Elsevier, vol. 162(C), pages 1453-1461.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rezaie, Ali Bashiri & Montazer, Majid, 2018. "One-step fabrication of fatty acids/nano copper/polyester shape-stable composite phase change material for thermal energy management and storage," Applied Energy, Elsevier, vol. 228(C), pages 1911-1920.
- Song, Shaokun & Ai, Hong & Zhu, Wanting & Qiu, Feng & Wang, Yuqi & Zhou, Jian, 2020. "Eco-friendly electrospun nanofibrous membranes with high thermal energy capacity and improved thermal transfer efficiency," Renewable Energy, Elsevier, vol. 148(C), pages 504-511.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Darzi, Mohammad Ebrahimnejad & Golestaneh, Seyyed Iman & Kamali, Marziyeh & Karimi, Gholamreza, 2019. "Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder," Renewable Energy, Elsevier, vol. 135(C), pages 719-728.
- Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Wu, Yang & Chen, Changzhong & Jia, Yifan & Wu, Jie & Huang, Yong & Wang, Linge, 2018. "Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage," Applied Energy, Elsevier, vol. 210(C), pages 167-181.
- Bashiri Rezaie, Ali & Montazer, Majid, 2020. "Shape-stable thermo-responsive nano Fe3O4/fatty acids/PET composite phase-change material for thermal energy management and saving applications," Applied Energy, Elsevier, vol. 262(C).
- Golestaneh, Seyyed Iman & Karimi, Gholamreza & Babapoor, Aziz & Torabi, Farshid, 2018. "Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles," Applied Energy, Elsevier, vol. 212(C), pages 552-564.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
- Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
- Chen, Weiwang & Weng, Wenguo, 2016. "Ultrafine lauric–myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning," Applied Energy, Elsevier, vol. 173(C), pages 168-176.
- Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
- Fang, Yutang & Liu, Xin & Liang, Xianghui & Liu, Hong & Gao, Xuenong & Zhang, Zhengguo, 2014. "Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 132(C), pages 551-556.
- Golestaneh, Seyyed Iman & Karimi, Gholamreza & Babapoor, Aziz & Torabi, Farshid, 2018. "Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles," Applied Energy, Elsevier, vol. 212(C), pages 552-564.
- Wei, Haiting & Xie, Xiuzhen & Li, Xiangqi & Lin, Xingshui, 2016. "Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material," Applied Energy, Elsevier, vol. 178(C), pages 616-623.
- Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
- Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
- He, Hongtao & Zhao, Pin & Yue, Qinyan & Gao, Baoyu & Yue, Dongting & Li, Qian, 2015. "A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation," Renewable Energy, Elsevier, vol. 76(C), pages 45-52.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- Wu, Wenhao & Huang, Xinyu & Li, Kai & Yao, Ruimin & Chen, Renjie & Zou, Ruqiang, 2017. "A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion," Applied Energy, Elsevier, vol. 190(C), pages 474-480.
- Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
- Darzi, Mohammad Ebrahimnejad & Golestaneh, Seyyed Iman & Kamali, Marziyeh & Karimi, Gholamreza, 2019. "Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder," Renewable Energy, Elsevier, vol. 135(C), pages 719-728.
- Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
- Qian, Yong & Wei, Ping & Jiang, Pingkai & Li, Zhi & Yan, Yonggang & Liu, Jiping, 2013. "Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application," Applied Energy, Elsevier, vol. 106(C), pages 321-327.
- Wu, Yang & Chen, Changzhong & Jia, Yifan & Wu, Jie & Huang, Yong & Wang, Linge, 2018. "Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage," Applied Energy, Elsevier, vol. 210(C), pages 167-181.
More about this item
Keywords
Fatty acid eutectics; Composite phase change material (PCM); Co-electrospinning; Thermal energy storage/retrieval; Fiber;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:409-417. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.