IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011708.html
   My bibliography  Save this article

The experimental and numerical study on a novel all-day PCM thermal-catalytic purified Trombe wall in winter

Author

Listed:
  • Li, Niansi
  • Cao, Xuhui
  • Zhang, Guoji
  • Wang, Yiting
  • Hu, Xuan
  • Liu, Jin
  • Yu, Bendong
  • Ji, Jie
  • Liu, Xiaoyong

Abstract

People pay most of time of evening at home after work. Thus, both the indoor thermal comfort and indoor air quality at nighttime have been obtained more attention. The combination application of PCMs with thermal catalytic purification technology in a Trombe wall that realizes all-day formaldehyde removal and space heating can well solve both issues. Here, an all-day purified Trombe Wall was proposed and designed. The thermal and formaldehyde removal performances were experimentally tested in two continuous days. Then the system heat and mass transfer model were established and experimentally verified. Finally, the optimization works on the type and thickness on PCMs were conducted based on the model. The main results were: (1) The experimental results showed that the thermal efficiency and average formaldehyde removal ratio were 50.8 % and 41.6 %, respectively. The total volume of clean air generated in daytime and nighttime were 249.8 m3 and 241.4 m3, respectively. (2) The RSMD values for the model verification were 5.9–9.6 %, which showed the model had a good prediction on the experimental results. (3) The selection of Butyl palmitate at 44 °C as the PCM and the thickness set to 1 cm could make the system have better energy saving and purification performance.

Suggested Citation

  • Li, Niansi & Cao, Xuhui & Zhang, Guoji & Wang, Yiting & Hu, Xuan & Liu, Jin & Yu, Bendong & Ji, Jie & Liu, Xiaoyong, 2024. "The experimental and numerical study on a novel all-day PCM thermal-catalytic purified Trombe wall in winter," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011708
    DOI: 10.1016/j.energy.2024.131397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Ma, Qingsong & Fukuda, Hiroatsu & Lee, Myonghyang & Kobatake, Takumi & Kuma, Yuko & Ozaki, Akihito, 2018. "Study on the utilization of heat in the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system," Applied Energy, Elsevier, vol. 222(C), pages 861-871.
    3. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    4. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    5. Dong, Jiankai & Chen, Zhihua & Zhang, Long & Cheng, Yuanda & Sun, Suyuting & Jie, Jia, 2019. "Experimental investigation on the heating performance of a novel designed trombe wall," Energy, Elsevier, vol. 168(C), pages 728-736.
    6. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    7. Yu, Bendong & Li, Niansi & Ji, Jie, 2019. "Performance analysis of a purified Trombe wall with ventilation blinds based on photo-thermal driven purification," Applied Energy, Elsevier, vol. 255(C).
    8. Bevilacqua, Piero & Bruno, Roberto & Szyszka, Jerzy & Cirone, Daniela & Rollo, Antonino, 2022. "Summer and winter performance of an innovative concept of Trombe wall for residential buildings," Energy, Elsevier, vol. 258(C).
    9. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    11. Yang, Xiaojiao & Sun, Liangliang & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling, 2018. "Experimental investigation on performance comparison of PV/T-PCM system and PV/T system," Renewable Energy, Elsevier, vol. 119(C), pages 152-159.
    12. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    13. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    14. Liu, Huifang & Li, Peijia & Yu, Bendong & Zhang, Mingyi & Tan, Qianli & Wang, Yu, 2022. "The performance analysis of a high-efficiency dual-channel Trombe wall in winter," Energy, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    3. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    4. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    5. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    6. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
    7. Wu, Shuang-Ying & Xu, Li & Xiao, Lan, 2020. "Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling," Renewable Energy, Elsevier, vol. 148(C), pages 338-348.
    8. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    9. Si, Pengfei & Lv, Yuexia & Rong, Xiangyang & Shi, Lijun & Yan, Jinyue & Wang, Xin, 2020. "An innovative building envelope with variable thermal performance for passive heating systems," Applied Energy, Elsevier, vol. 269(C).
    10. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    11. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    12. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    13. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    14. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).
    15. Li, Niansi & Gu, Tao & Yu, Bendong & Ji, Jie & Liu, Xiaoyong, 2023. "A ventilated wall integrated with heating/catalytic blinds: Catalyst, system design and performance study," Renewable Energy, Elsevier, vol. 212(C), pages 792-802.
    16. Ma, Qingsong & Fukuda, Hiroatsu & Wei, Xindong & Hariyadi, Agus, 2019. "Optimizing energy performance of a ventilated composite Trombe wall in an office building," Renewable Energy, Elsevier, vol. 134(C), pages 1285-1294.
    17. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Li, Niansi & Gu, Tao & Li, Yulin & Liu, Xiaoyong & Ji, Jie & Yu, Bendong, 2023. "The performance investigation on a multifunctional wall with photo-thermal catalytic blinds for heating, shading and formaldehyde removal," Energy, Elsevier, vol. 279(C).
    19. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    20. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.