Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2023.113746
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
- Pirvaram, A. & Sadrameli, S.M. & Abdolmaleki, L., 2019. "Energy management of a household refrigerator using eutectic environmental friendly PCMs in a cascaded condition," Energy, Elsevier, vol. 181(C), pages 321-330.
- Sara Sultan & Jason Hirschey & Navin Kumar & Borui Cui & Xiaobing Liu & Tim J. LaClair & Kyle R. Gluesenkamp, 2023. "Techno-Economic Assessment of Residential Heat Pump Integrated with Thermal Energy Storage," Energies, MDPI, vol. 16(10), pages 1-23, May.
- Alzuwaid, F.A. & Ge, Y.T. & Tassou, S.A. & Sun, J., 2016. "The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation," Applied Energy, Elsevier, vol. 180(C), pages 76-85.
- Răzvan Calotă & Mihai Savaniu & Alina Girip & Ilinca Năstase & Matei Răzvan Georgescu & Oana Tonciu, 2022. "Study on Energy Efficiency of an Off-Grid Vending Machine with Compact Heat Exchangers and Low GWP Refrigerant Powered by Solar Energy," Energies, MDPI, vol. 15(12), pages 1-26, June.
- Vogel, J. & Johnson, M., 2019. "Natural convection during melting in vertical finned tube latent thermal energy storage systems," Applied Energy, Elsevier, vol. 246(C), pages 38-52.
- Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
- Mazzoni, Stefano & Sze, Jia Yin & Nastasi, Benedetto & Ooi, Sean & Desideri, Umberto & Romagnoli, Alessandro, 2021. "A techno-economic assessment on the adoption of latent heat thermal energy storage systems for district cooling optimal dispatch & operations," Applied Energy, Elsevier, vol. 289(C).
- Al-Abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Lim, C.H. & Th, Abdulrahman, 2012. "Review of thermal energy storage for air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5802-5819.
- Cheng, Wen-Long & Mei, Bao-Jun & Liu, Yi-Ning & Huang, Yong-Hua & Yuan, Xu-Dong, 2011. "A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation," Energy, Elsevier, vol. 36(10), pages 5797-5804.
- Marques, A.C. & Davies, G.F. & Evans, J.A. & Maidment, G.G. & Wood, I.D., 2013. "Theoretical modelling and experimental investigation of a thermal energy storage refrigerator," Energy, Elsevier, vol. 55(C), pages 457-465.
- Angelo Maiorino & Adrián Mota-Babiloni & Manuel Gesù Del Duca & Ciro Aprea, 2021. "Scheduling Optimization of a Cabinet Refrigerator Incorporating a Phase Change Material to Reduce Its Indirect Environmental Impact," Energies, MDPI, vol. 14(8), pages 1-17, April.
- Raud, Ralf & Jacob, Rhys & Bruno, Frank & Will, Geoffrey & Steinberg, Theodore A., 2017. "A critical review of eutectic salt property prediction for latent heat energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 936-944.
- Yang, Kun & Zhu, Neng & Chang, Chen & Wang, Daquan & Yang, Shan & Ma, Shengming, 2018. "A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study," Energy, Elsevier, vol. 165(PB), pages 1085-1096.
- Li, Shuang-Fei & Liu, Zhen-hua & Wang, Xue-Jiao, 2019. "A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials," Applied Energy, Elsevier, vol. 255(C).
- Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
- Gado, Mohamed G. & Hassan, Hamdy, 2023. "Energy-saving potential of compression heat pump using thermal energy storage of phase change materials for cooling and heating applications," Energy, Elsevier, vol. 263(PE).
- Shamseddine, I. & Pennec, F. & Biwole, P. & Fardoun, F., 2022. "Supercooling of phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
- Luís Sousa Rodrigues & Daniel Lemos Marques & Jorge Augusto Ferreira & Vítor António Ferreira Costa & Nelson Dias Martins & Fernando José Neto Da Silva, 2022. "The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 15(20), pages 1-36, October.
- Ahn, Jae Hwan & Kim, Hoon & Jeon, Yongseok & Kwon, Ki Hyun, 2022. "Performance characteristics of mobile cooling system utilizing ice thermal energy storage with direct contact discharging for a refrigerated truck," Applied Energy, Elsevier, vol. 308(C).
- Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
- Xinchen Zhou & Xiang Xu & Jiping Huang, 2023. "Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Cheng, Wen-Long & Yuan, Xu-Dong, 2013. "Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers," Energy, Elsevier, vol. 59(C), pages 265-276.
- Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
- Xu, H.J. & Zhao, C.Y., 2016. "Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model," Renewable Energy, Elsevier, vol. 86(C), pages 228-237.
- Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
- Shun-Hsiung Peng & Shang-Lien Lo, 2024. "An Economic Analysis of Energy Saving and Carbon Mitigation by the Use of Phase Change Materials for Cool Energy Storage for an Air Conditioning System—A Case Study," Energies, MDPI, vol. 17(4), pages 1-17, February.
- Chandrasekaran, P. & Cheralathan, M. & Velraj, R., 2015. "Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system – An experimental study," Energy, Elsevier, vol. 90(P1), pages 807-813.
- Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
- Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
- Tan, Pepe & Lindberg, Patrik & Eichler, Kaia & Löveryd, Per & Johansson, Pär & Kalagasidis, Angela Sasic, 2020. "Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building," Applied Energy, Elsevier, vol. 276(C).
- Ruddell, Benjamin L. & Salamanca, Francisco & Mahalov, Alex, 2014. "Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage," Applied Energy, Elsevier, vol. 134(C), pages 35-44.
More about this item
Keywords
Thermal energy storage; Phase-change material; Household refrigerator; Display cabinet; Energy efficiency; Carbon emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.