IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp734-740.html
   My bibliography  Save this article

Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide

Author

Listed:
  • Liu, Yushi
  • Yang, Yingzi

Abstract

Two types of form-stable phase change materials (PCMs) were developed by impregnation of Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt (EHS) into expanded graphite (EG) and expanded graphite oxide (EGO). The effects and mechanisms of chemical structures of EG and EGO on thermal properties were thoroughly discussed, in which the chemical structures were revealed by XPS, Raman spectra and XRD, and the thermal properties were assessed using the DSC analysis and thermal conductivity test. The results indicated that the EHS/EGO composite possessed higher latent heat, favorable thermal conductivity and lower supercooling degree because of the more surface oxygen-containing groups and surface defects as well as larger interlayer spacing in the EGO. Furthermore, the EHS/EGO composite remained thermally stable after 200 thermal cycles. This work will provide insights into the performance improvement of form-stable PCM composites by means of tailoring the chemical structures of porous supports.

Suggested Citation

  • Liu, Yushi & Yang, Yingzi, 2018. "Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide," Renewable Energy, Elsevier, vol. 115(C), pages 734-740.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:734-740
    DOI: 10.1016/j.renene.2017.08.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730856X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    3. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    4. Li, Min & Wu, Zhishen & Kao, Hongtao, 2011. "Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials," Applied Energy, Elsevier, vol. 88(9), pages 3125-3132.
    5. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    6. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    7. Xu, Biwan & Li, Zongjin, 2013. "Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 105(C), pages 229-237.
    8. Ushak, Svetlana & Suárez, Miriam & Véliz, Sussy & Fernández, Angel G. & Flores, Elsa & Galleguillos, Héctor R., 2016. "Characterization of calcium chloride tetrahydrate as a phase change material and thermodynamic analysis of the results," Renewable Energy, Elsevier, vol. 95(C), pages 213-224.
    9. Tian, Heqing & Wang, Weilong & Ding, Jing & Wei, Xiaolan & Song, Ming & Yang, Jianping, 2015. "Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites," Applied Energy, Elsevier, vol. 148(C), pages 87-92.
    10. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    11. Yang Wen & Kai He & Yujie Zhu & Fudong Han & Yunhua Xu & Isamu Matsuda & Yoshitaka Ishii & John Cumings & Chunsheng Wang, 2014. "Expanded graphite as superior anode for sodium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
    2. Zhang, Ting & Zhang, Tuodi & Zhang, Jing & Zhang, Deyi & Guo, Pengran & Li, Hongxia & Li, Chunlei & Wang, Yi, 2021. "Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties," Renewable Energy, Elsevier, vol. 165(P1), pages 504-513.
    3. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    4. Yu, Kunyang & Jia, Minjie & Yang, Yingzi & Liu, Yushi, 2023. "A clean strategy of concrete curing in cold climate: Solar thermal energy storage based on phase change material," Applied Energy, Elsevier, vol. 331(C).
    5. Honcová, Pavla & Sádovská, Galina & Pastvová, Jana & Koštál, Petr & Seidel, Jürgen & Sazama, Petr & Pilař, Radim, 2021. "Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate," Renewable Energy, Elsevier, vol. 168(C), pages 1015-1026.
    6. Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2018. "Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals," Energy, Elsevier, vol. 161(C), pages 508-516.
    7. Wang, Yan & Sui, Jiahao & Xu, Zijie, 2022. "Preparation and characterization of CaCl2·6H2O based binary inorganic eutectic system for low temperature thermal energy storage," Energy, Elsevier, vol. 259(C).
    8. Wang, Chengjun & Liang, Weidong & Yang, Yueyue & Liu, Fang & Sun, Hanxue & Zhu, Zhaoqi & Li, An, 2020. "Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage," Renewable Energy, Elsevier, vol. 153(C), pages 182-192.
    9. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    10. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    11. Li, Chuanchang & Peng, Meicheng & Xie, Baoshan & Li, Yaxi & Li, Mu, 2024. "Novel phase change cold energy storage materials for refrigerated transportation of fruits," Renewable Energy, Elsevier, vol. 220(C).
    12. Han, Weifang & Ge, Chunhua & Zhang, Rui & Ma, Zhiyan & Wang, Lixia & Zhang, Xiangdong, 2019. "Boron nitride foam as a polymer alternative in packaging phase change materials: Synthesis, thermal properties and shape stability," Applied Energy, Elsevier, vol. 238(C), pages 942-951.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    2. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    3. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    4. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    5. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    6. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    7. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
    9. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    10. Parameshwaran, R. & Deepak, K. & Saravanan, R. & Kalaiselvam, S., 2014. "Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 115(C), pages 320-330.
    11. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    12. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2017. "Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 707-726.
    13. Huang, Sheng & Lu, Jun & Li, Yongcai, 2022. "Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units," Energy, Elsevier, vol. 239(PE).
    14. Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
    15. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    16. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    17. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    18. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    19. Ferrer, Gerard & Solé, Aran & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2015. "Review on the methodology used in thermal stability characterization of phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 665-685.
    20. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:734-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.