IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp521-529.html
   My bibliography  Save this article

Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles

Author

Listed:
  • Anderson, Ryan
  • Shiri, Samira
  • Bindra, Hitesh
  • Morris, Jeffrey F.

Abstract

A model is presented to predict the fluid and solid temperatures in a packed bed thermal energy storage vessel using compressed gas as heat transfer fluid (HTF). The model is compared to data from an experimental vessel that is 10′ tall with a 2.25″ storage diameter filled with 6mm diameter alpha-alumina beads, using air as the HTF. The model is validated against this data for two flow rates, and the exergy efficiency of the experimental data is also calculated. Developments in the model include an optimized fluid–solid heat transfer coefficient based on formulas in the literature, incorporating wall heat losses from natural convection on the exterior wall of the vessel, and using temperature-dependent relationships for the thermophysical properties of the gas and alumina.

Suggested Citation

  • Anderson, Ryan & Shiri, Samira & Bindra, Hitesh & Morris, Jeffrey F., 2014. "Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles," Applied Energy, Elsevier, vol. 119(C), pages 521-529.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:521-529
    DOI: 10.1016/j.apenergy.2014.01.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400049X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.01.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Mawire, A. & McPherson, M. & Heetkamp, R.R.J. van den & Mlatho, S.J.P., 2009. "Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1246-1252, July.
    3. Singh, Harmeet & Saini, R.P. & Saini, J.S., 2010. "A review on packed bed solar energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1059-1069, April.
    4. Sanderson, T. M. & Cunningham, G. T., 1995. "Packed bed thermal storage systems," Applied Energy, Elsevier, vol. 51(1), pages 51-67.
    5. Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
    6. Li, Peiwen & Van Lew, Jon & Chan, Cholik & Karaki, Wafaa & Stephens, Jake & O’Brien, J.E., 2012. "Similarity and generalized analysis of efficiencies of thermal energy storage systems," Renewable Energy, Elsevier, vol. 39(1), pages 388-402.
    7. Wu, Ming & Li, Mingjia & Xu, Chao & He, Yaling & Tao, Wenquan, 2014. "The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium," Applied Energy, Elsevier, vol. 113(C), pages 1363-1371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Azawii, Mohammad M.S. & Theade, Carter & Bueno, Pablo & Anderson, Ryan, 2019. "Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections," Applied Energy, Elsevier, vol. 249(C), pages 409-422.
    2. Lizarraga-Garcia, Enrique & Mitsos, Alexander, 2014. "Effect of heat transfer structures on thermoeconomic performance of solid thermal storage," Energy, Elsevier, vol. 68(C), pages 896-909.
    3. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    4. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    5. Filali Baba, Yousra & Al Mers, Ahmed & Ajdad, Hamid, 2020. "Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization," Renewable Energy, Elsevier, vol. 153(C), pages 440-455.
    6. Singh, Shobhana & Sørensen, Kim & Condra, Thomas & Batz, Søren Søndergaard & Kristensen, Kristian, 2019. "Investigation on transient performance of a large-scale packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 1114-1129.
    7. Gutierrez, Andrea & Miró, Laia & Gil, Antoni & Rodríguez-Aseguinolaza, Javier & Barreneche, Camila & Calvet, Nicolas & Py, Xavier & Inés Fernández, A. & Grágeda, Mario & Ushak, Svetlana & Cabeza, Luis, 2016. "Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 763-783.
    8. Jian, Yongfang & Falcoz, Quentin & Neveu, Pierre & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2015. "Design and optimization of solid thermal energy storage modules for solar thermal power plant applications," Applied Energy, Elsevier, vol. 139(C), pages 30-42.
    9. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    10. Xu, Ben & Li, Peiwen & Chan, Cholik & Tumilowicz, Eric, 2015. "General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant," Applied Energy, Elsevier, vol. 140(C), pages 256-268.
    11. Liu, Shengchun & Li, Hailong & Song, Mengjie & Dai, Baomin & Sun, Zhili, 2018. "Impacts on the solidification of water on plate surface for cold energy storage using ice slurry," Applied Energy, Elsevier, vol. 227(C), pages 284-293.
    12. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    14. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    15. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    17. Hobold, Gustavo M. & da Silva, Alexandre K., 2017. "Critical phenomena and their effect on thermal energy storage in supercritical fluids," Applied Energy, Elsevier, vol. 205(C), pages 1447-1458.
    18. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    19. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    20. Kousksou, T. & El Rhafiki, T. & Jamil, A. & Bruel, P. & Zeraouli, Y., 2013. "PCMs inside emulsions: Some specific aspects related to DSC (differential scanning calorimeter)-like configurations," Energy, Elsevier, vol. 56(C), pages 175-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:521-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.