IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220300906.html
   My bibliography  Save this article

Low cost and eco-friendly wood fiber-based composite phase change material: Development, characterization and lab-scale thermoregulation performance for thermal energy storage

Author

Listed:
  • Sarı, Ahmet
  • Hekimoğlu, Gökhan
  • Tyagi, V.V.

Abstract

Thermal efficiency of passive building designs can be improved using phase change materials (PCMs). This study was focused on the development and lab-scale thermoregulation performance of wood fiber(WF)/capric acid-stearic acid(CA-SA) eutectic mixture as low-cost and eco-friendly composite PCM for thermal energy storage (TES). The composite including 52 wt% PCM showed leak-proof property. The structural/morphological characteristics, TES properties, cycling TES reliability and chemical stability of the leak-proof CPCM were investigated by SEM, FT-IR, XRD, DSC, and TGA techniques. The lab-scale thermoregulation performance of CPCM board was also evaluated experimentally. The SEM results indicated that the eutectic PCM was successfully impregnated with WF as the spectral findings confirmed the good compatibility among its constituents. DSC results demonstrated that the CPCM had a melting temperature of 23.38 °C and latent heat of 92.1 J/g. TGA measurements revealed that the servicing temperature of the CPCM was much over than its thermal decomposition limit. It had stable TES properties and chemical structure after 600 melting-freezing cycles. Furthermore, lab-scale performance test exhibited that the temperature difference at the inside center of CPCM cubic cell and WF cubic cell was ascertained as averagely 2.67 °C during a 72 min-heating period and 1.18 °C during a 100 min-cooling period.

Suggested Citation

  • Sarı, Ahmet & Hekimoğlu, Gökhan & Tyagi, V.V., 2020. "Low cost and eco-friendly wood fiber-based composite phase change material: Development, characterization and lab-scale thermoregulation performance for thermal energy storage," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300906
    DOI: 10.1016/j.energy.2020.116983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behi, Mohammadreza & Mirmohammadi, Seyed Aliakbar & Ghanbarpour, Morteza & Behi, Hamidreza & Palm, Björn, 2018. "Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment," Energy, Elsevier, vol. 164(C), pages 449-464.
    2. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    3. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    4. Kheradmand, Mohammad & Azenha, Miguel & de Aguiar, José L.B. & Castro-Gomes, João, 2016. "Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings," Energy, Elsevier, vol. 94(C), pages 250-261.
    5. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    6. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2017. "Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 707-726.
    7. Kong, Minsuk & Alvarado, Jorge L. & Thies, Curt & Morefield, Sean & Marsh, Charles P., 2017. "Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems," Energy, Elsevier, vol. 122(C), pages 691-700.
    8. Song, Shaokun & Zhao, Tingting & Qiu, Feng & Zhu, Wanting & Chen, Taorui & Guo, Yi & Zhang, Yang & Wang, Yuqi & Feng, Rui & Liu, Yang & Xiong, Chuanxi & Zhou, Jian & Dong, Lijie, 2019. "Natural microtubule encapsulated phase change material with high thermal energy storage capacity," Energy, Elsevier, vol. 172(C), pages 1144-1150.
    9. Atinafu, Dimberu G. & Dong, Wenjun & Huang, Xiubing & Gao, Hongyi & Wang, Ge, 2018. "Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity," Applied Energy, Elsevier, vol. 211(C), pages 1203-1215.
    10. Majumdar, Rudrodip & Saha, Sandip K., 2019. "Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank," Energy, Elsevier, vol. 178(C), pages 1-20.
    11. Li, Xiao-Yan & Yang, Liu & Wang, Xue-Lei & Miao, Xin-Yue & Yao, Yu & Qiang, Qiu-Qiu, 2018. "Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems," Energy, Elsevier, vol. 150(C), pages 591-600.
    12. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    13. Li, Min & Wu, Zhishen & Tan, Jinmiao, 2013. "Heat storage properties of the cement mortar incorporated with composite phase change material," Applied Energy, Elsevier, vol. 103(C), pages 393-399.
    14. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atinafu, Dimberu G. & Wi, Seunghwan & Yun, Beom Yeol & Kim, Sumin, 2021. "Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage," Energy, Elsevier, vol. 216(C).
    2. Sun, Jingmeng & Zhao, Junqi & Zhang, Weiye & Xu, Jianuo & Wang, Beibei & Wang, Xuanye & Zhou, Jun & Guo, Hongwu & Liu, Yi, 2023. "Composites with a Novel Core–shell Structural Expanded Perlite/Polyethylene glycol Composite PCM as Novel Green Energy Storage Composites for Building Energy Conservation," Applied Energy, Elsevier, vol. 330(PA).
    3. Konuklu, Yeliz & Akar, Hasan Burak, 2023. "Promising palmitic acid/poly(allyl methacrylate) microcapsules for thermal management applications," Energy, Elsevier, vol. 262(PB).
    4. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    5. Sarı, Ahmet & Hekimoğlu, Gökhan & Tyagi, V.V. & Sharma, R.K., 2020. "Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters," Energy, Elsevier, vol. 207(C).
    6. Nazari, Meysam & Jebrane, Mohamed & Terziev, Nasko, 2023. "New hybrid bio-composite based on epoxidized linseed oil and wood particles hosting ethyl palmitate for energy storage in buildings," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    2. Sarı, Ahmet & Hekimoğlu, Gökhan & Tyagi, V.V. & Sharma, R.K., 2020. "Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters," Energy, Elsevier, vol. 207(C).
    3. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    4. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    5. Jiang, Feng & Ge, Zhiwei & Ling, Xiang & Cang, Daqiang & Zhang, Lingling & Ding, Yulong, 2021. "Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage," Renewable Energy, Elsevier, vol. 179(C), pages 327-338.
    6. Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
    7. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    8. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    9. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    11. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    12. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    13. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    14. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    15. Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
    16. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    17. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    18. Ana Vaz Sá & Miguel Azenha & A.S. Guimarães & J.M.P.Q. Delgado, 2020. "FEM Applied to Building Physics: Modeling Solar Radiation and Heat Transfer of PCM Enhanced Test Cells," Energies, MDPI, vol. 13(9), pages 1-19, May.
    19. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    20. Li, Minqi & Lin, Zhongqi & Sun, Yongjun & Wu, Fengping & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng, 2020. "Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems," Renewable Energy, Elsevier, vol. 157(C), pages 670-677.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.