IDEAS home Printed from https://ideas.repec.org/f/c/pgr328.html
   My authors  Follow this author

Jim Edward Griffin

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Griffin, Jim & Liu, Jia & Maheu, John M, 2016. "Bayesian Nonparametric Estimation of Ex-post Variance," MPRA Paper 71220, University Library of Munich, Germany.

    Cited by:

    1. Dan Li & Adam Clements & Christopher Drovandi, 2019. "Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo," Papers 1906.03828, arXiv.org, revised Mar 2020.

  2. Griffin, Jim & Steel, Mark F.J., 2008. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," MPRA Paper 11071, University Library of Munich, Germany.

    Cited by:

    1. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    2. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    3. Behme, Anita & Chong, Carsten & Klüppelberg, Claudia, 2015. "Superposition of COGARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1426-1469.
    4. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
    5. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2016. "A Multiscale Stochastic Conditional Duration Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 1-28, December.
    6. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    7. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2021. "Multiscale Stochastic Volatility Model with Heavy Tails and Leverage Effects," JRFM, MDPI, vol. 14(5), pages 1-28, May.

  3. Jim Griffin & Mark Steel, 2005. "Bayesian Stochastic Frontier Analysis Using WinBUGS," Econometrics 0509004, University Library of Munich, Germany.

    Cited by:

    1. Gholamreza Hajargasht & D.S. Prasada Rao, 2019. "Multilateral Index Number Systems for International Price Comparisons: Properties, Existence and Uniqueness," CEPA Working Papers Series WP032019, School of Economics, University of Queensland, Australia.
    2. A. Tonini, 2012. "A Bayesian stochastic frontier: an application to agricultural productivity growth in European countries," Economic Change and Restructuring, Springer, vol. 45(4), pages 247-269, November.
    3. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    4. Yaguo Deng & Helena Veiga & Michael P. Wiper, 2019. "Efficiency evaluation of hotel chains: a Spanish case study," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(2), pages 115-139, June.
    5. Skevas, Ioannis & Skevas, Theodoros, 2021. "A generalized true random-effects model with spatially autocorrelated persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1131-1142.
    6. Patricia Tecles & Benjamin M. Tabak, 2010. "Determinants of Bank Efficiency: the Case of Brazil," Working Papers Series 210, Central Bank of Brazil, Research Department.
    7. Hajargasht, Gholamreza & Coelli, Tim & Rao, D.S. Prasada, 2008. "A dual measure of economies of scope," Economics Letters, Elsevier, vol. 100(2), pages 185-188, August.
    8. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    9. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Maria Olivares & Heike Wetzel, 2011. "Competing in the Higher Education Market: Empirical Evidence for Economies of Scale and Scope in German Higher Education Institutions," Working Paper Series in Economics 223, University of Lüneburg, Institute of Economics.
    11. Sarmiento Paipilla, N.M. & Galán, Jorge E., 2015. "The Influence of Risk-taking on Bank Efficiency : Evidence from Colombia," Other publications TiSEM f7a73cdb-55a2-40d3-936f-7, Tilburg University, School of Economics and Management.
    12. Yong Li & Sushanta K. Mallick & Nianling Wang & Jun Yu & Tao Zeng, 2024. "Deviance Information Criterion for Model Selection:Theoretical Justification and Applications," Working Papers 202415, University of Macau, Faculty of Business Administration.
    13. Gholamreza Hajargasht & William E. Griffiths, 2016. "Estimation and Testing of Stochastic Frontier Models using Variational Bayes," Department of Economics - Working Papers Series 2024, The University of Melbourne.
    14. Philippe K. Widmer & Peter Zweifel & Mehdi Farsi, 2011. "Accounting for heterogeneity in the measurement of hospital performance," ECON - Working Papers 052, Department of Economics - University of Zurich.
    15. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    16. Carlos Pestana Barros & Emanuel Reis Leão & Nkanga Pedro João Macanda & Zorro Mendes, 2016. "A Bayesian Efficiency Analysis of Angolan Banks," South African Journal of Economics, Economic Society of South Africa, vol. 84(3), pages 484-498, September.
    17. José Luis Gallizo & Jordi Moreno & Manuel Salvador, 2015. "European banking integration: is foreign ownership affecting banking efficiency?," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(2), pages 340-368, April.
    18. Mutz, Rüdiger & Bornmann, Lutz & Daniel, Hans-Dieter, 2017. "Are there any frontiers of research performance? Efficiency measurement of funded research projects with the Bayesian stochastic frontier analysis for count data," Journal of Informetrics, Elsevier, vol. 11(3), pages 613-628.
    19. Laura Di Giorgio & Abraham D Flaxman & Mark W Moses & Nancy Fullman & Michael Hanlon & Ruben O Conner & Alexandra Wollum & Christopher J L Murray, 2016. "Efficiency of Health Care Production in Low-Resource Settings: A Monte-Carlo Simulation to Compare the Performance of Data Envelopment Analysis, Stochastic Distance Functions, and an Ensemble Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    20. Sarmiento, Miguel & Galán, Jorge E., 2014. "Heterogeneous effects of risk-taking on bank efficiency : a stochastic frontier model with random coefficients," DES - Working Papers. Statistics and Econometrics. WS ws142013, Universidad Carlos III de Madrid. Departamento de Estadística.
    21. William E. Griffiths & Gholamreza Hajargasht, 2015. "Welfare Consequences of Information Aggregation and Optimal Market Size," Department of Economics - Working Papers Series 1190, The University of Melbourne.
    22. Seongho Song & David Yi, 2011. "The fundraising efficiency in U.S. non-profit art organizations: an application of a Bayesian estimation approach using the stochastic frontier production model," Journal of Productivity Analysis, Springer, vol. 35(2), pages 171-180, April.
    23. Marta Arbelo-Pérez & Yaiza Armas-Cruz & Antonio Arbelo, 2022. "Environmental strategy and firm performance: A new methodological proposal," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(8), pages 283-292.
    24. Goto, Mika & Makhija, Anil K., 2007. "The Impact of Competition and Corporate Structure on Productive Efficiency: The Case of the U.S. Electric Utility Industry, 1990-2004," Working Paper Series 2007-10, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    25. Martín, Juan Carlos & Voltes-Dorta, Augusto, 2011. "The econometric estimation of airports' cost function," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 112-127, January.
    26. Dempsey-Brench, Zara & Volta, Nicola, 2018. "A cost-efficiency analysis of European air navigation service providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 11-23.
    27. Philippe K. Widmer, 2011. "Does prospective payment increase hospital (in)efficiency? Evidence from the Swiss hospital sector," ECON - Working Papers 053, Department of Economics - University of Zurich.
    28. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    29. Henderson, Heath & Follett, Lendie, 2020. "A Bayesian framework for estimating human capabilities," World Development, Elsevier, vol. 129(C).
    30. Galán, Jorge E. & Pollitt, Michael G., 2014. "Inefficiency persistence and heterogeneity in Colombian electricity utilities," Energy Economics, Elsevier, vol. 46(C), pages 31-44.
    31. Sheng-Kai Chang & Yi-Yi Chen & Hung-Jen Wang, 2012. "A Bayesian estimator for stochastic frontier models with errors in variables," Journal of Productivity Analysis, Springer, vol. 38(1), pages 1-9, August.
    32. Shirong Zhao & Jeremy Losak, 2024. "Two-tiered stochastic frontier models: a Bayesian perspective," Journal of Productivity Analysis, Springer, vol. 61(2), pages 85-106, April.
    33. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    34. Robin C. Sickles & Wonho Song & Valentin Zelenyuk, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," CEPA Working Papers Series WP082018, School of Economics, University of Queensland, Australia.
    35. de Mendonça, Mário Jorge Cardoso & Pereira, Amaro Olimpio & Bellido, Marlon Max H. & Medrano, Luis Alberto & Pessanha, José Francisco Moreira, 2023. "Service quality performance indicators for electricity distribution in Brazil," Utilities Policy, Elsevier, vol. 80(C).
    36. Voltes-Dorta, Augusto & Pagliari, Romano, 2012. "The impact of recession on airports' cost efficiency," Transport Policy, Elsevier, vol. 24(C), pages 211-222.
    37. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    38. Luis Alberiko Gil-Alana & Carlos Barros & Dercio Mandlaze, 2017. "A performance assessment of Mozambique banks: a Bayesian stochastic frontier," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4579-4587, September.
    39. Michael S. Rimler & Seongho Song & David T. Yi, 2010. "Estimating Production Efficiency in Men’s NCAA College Basketball: A Bayesian Approach," Journal of Sports Economics, , vol. 11(3), pages 287-315, June.
    40. Mohottala G. Kularatne & Namal N. Balasooriya & Sean Pascoe & Clevo Wilson, 2017. "Is there a locational productivity advantage for rice cultivation? Results from a technical efficiency analysis of water use in Sri Lankan village irrigation systems," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(4), pages 789-806, October.
    41. Barros, Carlos Pestana & Assaf, A.George & de Araujo, Ari Francisco, 2011. "Cost performance of Brazilian soccer clubs: A Bayesian varying efficiency distribution model," Economic Modelling, Elsevier, vol. 28(6), pages 2730-2735.
    42. Ramsey, Austin F. & Wang, Huaiyu, 2018. "Non-Farm Income and Technical Efficiency in the Uplands of Yunnan, China: A Bayesian Non-Crossing Quantile Regression Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274375, Agricultural and Applied Economics Association.
    43. Bellio, Ruggero & Grassetti, Luca, 2011. "Semiparametric stochastic frontier models for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 71-83, January.
    44. Md. Rezaul Karim & Sefat-E-Barket, 2024. "Bayesian Hierarchical Spatial Modeling of COVID-19 Cases in Bangladesh," Annals of Data Science, Springer, vol. 11(5), pages 1581-1607, October.
    45. Economou, Polychronis & Malefaki, Sonia & Kounetas, Konstantinos, 2019. "Productive Performance and Technology Gaps using a Bayesian Metafrontier Production Function: A cross-country comparison," MPRA Paper 94462, University Library of Munich, Germany.
    46. Scotti, Davide & Volta, Nicola, 2017. "Profitability change in the global airline industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 1-12.
    47. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    48. Guarini, Giulio & Laureti, Tiziana & Garofalo, Giuseppe, 2020. "Socio-institutional determinants of educational resource efficiency according to the capability approach: An endogenous stochastic frontier analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    49. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    50. Tabak, Benjamin M. & Langsch Tecles, Patricia, 2010. "Estimating a Bayesian stochastic frontier for the Indian banking system," International Journal of Production Economics, Elsevier, vol. 125(1), pages 96-110, May.
    51. Jose L. Gallizo & Jordi Moreno & Ioana Iuliana Pop (Grigorescu), 2011. "Banking Efficiency And European Integration. Implications Of The Banking Reform In Romania," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(13), pages 1-25.
    52. Iordanis Parikoglou & Grigorios Emvalomatis & Doris Läpple & Fiona Thorne & Michael Wallace, 2024. "The contribution of innovation to farm-level productivity," Journal of Productivity Analysis, Springer, vol. 62(2), pages 239-255, October.
    53. Ahmad, Shabbir & Shankar, Sriram & Steen, John & Verreynne, Martie-Louise & Burki, Abid Aman, 2021. "Using measures of efficiency for regionally-targeted smallholder policy intervention: The case of Pakistan’s horticulture sector," Land Use Policy, Elsevier, vol. 101(C).
    54. Maziotis, Alexandros & Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Molinos-Senante, Maria, 2023. "Cost and quality of service performance in the Chilean water industry: A comparison of stochastic approaches," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 211-219.
    55. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Working Papers EPRG 1403, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    56. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    57. Marta Arbelo-Pérez & Pilar Pérez-Gómez & Antonio Arbelo, 2023. "Profit efficiency and its determinants in the agricultural sector: A Bayesian approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(11), pages 436-445.
    58. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
    59. Gholamreza Hajargasht, 2015. "Stochastic frontiers with a Rayleigh distribution," Journal of Productivity Analysis, Springer, vol. 44(2), pages 199-208, October.
    60. Juan Martín & Concepción Román & Augusto Voltes-Dorta, 2009. "A stochastic frontier analysis to estimate the relative efficiency of Spanish airports," Journal of Productivity Analysis, Springer, vol. 31(3), pages 163-176, June.
    61. C. P. Barros & Dércio Mandlaze & Scott Tainsky, 2016. "The efficiency of Mozambique soccer league: the Moçambola," Applied Economics, Taylor & Francis Journals, vol. 48(31), pages 2965-2971, July.
    62. Antonio Ramos Andrade & Julian Stow, 2017. "Assessing the efficiency of maintenance operators: A case study of turning railway wheelsets on an under-floor wheel lathe," Journal of Risk and Reliability, , vol. 231(2), pages 155-163, April.
    63. José L. Gallizo & Jordi Moreno & Manuel Salvador, 2016. "Banking Efficiency in the Enlarged European Union: Financial Crisis and Convergence," International Finance, Wiley Blackwell, vol. 19(1), pages 66-88, April.
    64. Voltes-Dorta, Augusto & Lei, Zheng, 2013. "The impact of airline differentiation on marginal cost pricing at UK airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 72-88.
    65. Maria Olivares & Heike Wetzel, 2014. "Editor's Choice Competing in the Higher Education Market: Empirical Evidence for Economies of Scale and Scope in German Higher Education Institutions," CESifo Economic Studies, CESifo Group, vol. 60(4), pages 653-680.
    66. Dalheimer, Bernhard & Parikoglou, Iordanis & Brambach, Fabian & Yanita, Mirawati & Kreft, Holger & Brümmer, Bernhard, 2024. "On the palm oil-biodiversity trade-off: Environmental performance of smallholder producers," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    67. Arabinda Das, 2015. "Copula-based Stochastic Frontier Model with Autocorrelated Inefficiency," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(2), pages 111-126, June.
    68. Habtamu Kiros & Alebachew Abebe, 2020. "Statistical Modeling of Women Employment Status at Harari Region Urban Districts: Bayesian Approach," Annals of Data Science, Springer, vol. 7(1), pages 63-76, March.
    69. Martín, Juan Carlos & Rodríguez-Déniz, Héctor & Voltes-Dorta, Augusto, 2013. "Determinants of airport cost flexibility in a context of economic recession," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 57(C), pages 70-84.
    70. Peter Zweifel & Philippe K. Widmer, 2023. "Accounting for heterogeneity in the measurement of hospital performance," Applied Economics, Taylor & Francis Journals, vol. 55(57), pages 6701-6716, December.
    71. Owusu, Rebecca & Kwadzo, Moses & Ghartey, William, 2022. "Regional Productivity Differential and Technology Gap In African Agriculture: A Stochastic Metafrontier Approach," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 10(1), January.
    72. Jean Joseph Minviel & Timo Sipiläinen, 2018. "Dynamic stochastic analysis of the farm subsidy-efficiency link: evidence from France," Journal of Productivity Analysis, Springer, vol. 50(1), pages 41-54, October.
    73. Hou, Xiaohui & Wang, Qing & Li, Cheng, 2015. "Role of off-balance sheet operations on bank scale economies: Evidence from China's banking sector," Emerging Markets Review, Elsevier, vol. 22(C), pages 140-153.
    74. Ha Thu Vu & Sean Turnell, 2010. "Cost Efficiency of the Banking Sector in Vietnam: A Bayesian Stochastic Frontier Approach with Regularity Constraints," Asian Economic Journal, East Asian Economic Association, vol. 24(2), pages 115-139, June.
    75. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    76. Haider, Salman & Mishra, Prajna Paramita, 2021. "Does innovative capability enhance the energy efficiency of Indian Iron and Steel firms? A Bayesian stochastic frontier analysis," Energy Economics, Elsevier, vol. 95(C).
    77. Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
    78. Tonini, Axel & Matus, Silvia Saravia & Gomez y Paloma, Sergio, 2011. "A Bayesian Total Factor Productivity Analysis of Tropical Agricultural Systems in Central-Western Africa And South-East Asia," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 116088, European Association of Agricultural Economists.
    79. Antonio Arbelo & Marta Arbelo-Pérez & Pilar Pérez-Gómez, 2022. "Are SMEs less efficient? A Bayesian approach to addressing heterogeneity across firms," Small Business Economics, Springer, vol. 58(4), pages 1915-1929, April.
    80. Galán, Jorge & Ramos, Sofía B. & Veiga, Helena, 2015. "An analysis of the dynamics of efficiency of mutual funds," DES - Working Papers. Statistics and Econometrics. WS ws1517, Universidad Carlos III de Madrid. Departamento de Estadística.
    81. Luo, Changqing & Ouyang, Zisheng, 2014. "Estimating IPO pricing efficiency by Bayesian stochastic frontier analysis: The ChiNext market case," Economic Modelling, Elsevier, vol. 40(C), pages 152-157.
    82. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2012. "Bayesian estimation approaches to first-price auctions," Journal of Econometrics, Elsevier, vol. 168(1), pages 47-59.
    83. Wimmer, Stefan G. & Sauer, Johannes, 2017. "The Economic Benefits of Farm Diversification: An Empirical Analysis of Economies of Scope Using the Dual Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258465, Agricultural and Applied Economics Association.

  4. Jim E. Griffin & Mark F.J. Steel, 2002. "Semiparametric Bayesian Inference for Stochastic Frontier Models," Econometrics 0209001, University Library of Munich, Germany, revised 18 Sep 2002.

    Cited by:

    1. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
    2. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    3. Tong Li & Xiaoyong Zheng, 2009. "Entry and Competition Effects in First-Price Auctions: Theory and Evidence from Procurement Auctions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(4), pages 1397-1429.
    4. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    5. Patricia Tecles & Benjamin M. Tabak, 2010. "Determinants of Bank Efficiency: the Case of Brazil," Working Papers Series 210, Central Bank of Brazil, Research Department.
    6. Sarmiento Paipilla, N.M. & Galán, Jorge E., 2015. "The Influence of Risk-taking on Bank Efficiency : Evidence from Colombia," Other publications TiSEM f7a73cdb-55a2-40d3-936f-7, Tilburg University, School of Economics and Management.
    7. Gholamreza Hajargasht & William E. Griffiths, 2016. "Estimation and Testing of Stochastic Frontier Models using Variational Bayes," Department of Economics - Working Papers Series 2024, The University of Melbourne.
    8. Mark J. Jensen & John M. Maheu, 2014. "Risk, Return, and Volatility Feedback: A Bayesian Nonparametric Analysis," FRB Atlanta Working Paper 2014-6, Federal Reserve Bank of Atlanta.
    9. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    10. Sarmiento, Miguel & Galán, Jorge E., 2014. "Heterogeneous effects of risk-taking on bank efficiency : a stochastic frontier model with random coefficients," DES - Working Papers. Statistics and Econometrics. WS ws142013, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    12. J. Griffin & M. Steel, 2008. "Flexible mixture modelling of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 29(1), pages 33-50, February.
    13. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    14. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    15. Henderson, Heath & Follett, Lendie, 2020. "A Bayesian framework for estimating human capabilities," World Development, Elsevier, vol. 129(C).
    16. Sun, Shengmin & Lopez, Rigoberto A. & Xiaoou Liu, 2016. "Property Rights, Labor Mobility and Collectivization: The Impact of Institutional Changes on China’s Agriculture in 1950-1978," Working Papers 41, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    17. Galán, Jorge E. & Pollitt, Michael G., 2014. "Inefficiency persistence and heterogeneity in Colombian electricity utilities," Energy Economics, Elsevier, vol. 46(C), pages 31-44.
    18. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    19. Georges Assaf, A. & Gillen, David, 2012. "Measuring the joint impact of governance form and economic regulation on airport efficiency," European Journal of Operational Research, Elsevier, vol. 220(1), pages 187-198.
    20. Preciado Arreola, José Luis & Johnson, Andrew L. & Chen, Xun C. & Morita, Hiroshi, 2020. "Estimating stochastic production frontiers: A one-stage multivariate semiparametric Bayesian concave regression method," European Journal of Operational Research, Elsevier, vol. 287(2), pages 699-711.
    21. Vincenzo Atella & Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Giorgia Marini, 2012. "Cost-containment policies and hospital efficiency: evidence from a panel of Italian hospitals," CEIS Research Paper 228, Tor Vergata University, CEIS, revised 13 Apr 2012.
    22. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    23. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    24. Rodríguez, Abel, 2013. "On the Jeffreys prior for the multivariate Ewens distribution," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1539-1546.
    25. Tong Li & Xiaoyong Zheng, 2008. "Semiparametric Bayesian inference for dynamic Tobit panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 699-728.
    26. Bellio, Ruggero & Grassetti, Luca, 2011. "Semiparametric stochastic frontier models for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 71-83, January.
    27. Economou, Polychronis & Malefaki, Sonia & Kounetas, Konstantinos, 2019. "Productive Performance and Technology Gaps using a Bayesian Metafrontier Production Function: A cross-country comparison," MPRA Paper 94462, University Library of Munich, Germany.
    28. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    29. Ricardo S. Ehlers, 2011. "Comparison of Bayesian models for production efficiency," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2433-2443, January.
    30. Assaf, A. George & Tsionas, Mike & Kock, Florian & Josiassen, Alexander, 2021. "A Bayesian non-parametric stochastic frontier model," Annals of Tourism Research, Elsevier, vol. 87(C).
    31. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.
    32. Scott E. Atkinson & Jeffrey H. Dorfman, 2009. "Feasible estimation of firm-specific allocative inefficiency through Bayesian numerical methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 675-697.
    33. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Working Papers EPRG 1403, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    34. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    35. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    36. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    37. Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2021. "Bridging the Divide? Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP082021, School of Economics, University of Queensland, Australia.
    38. Kamel Helali & Maha Kalai, 2015. "Technical Efficiency Determinants Of The Tunisian Manufacturing Industry: Stochastic Production Frontiers Estimates On Panel Data," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 40(2), pages 105-130, June.
    39. Agee, Mark D. & Atkinson, Scott E. & Crocker, Thomas D. & Williams, Jonathan W., 2014. "Non-separable pollution control: Implications for a CO2 emissions cap and trade system," Resource and Energy Economics, Elsevier, vol. 36(1), pages 64-82.
    40. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    41. Galán, Jorge & Ramos, Sofía B. & Veiga, Helena, 2015. "An analysis of the dynamics of efficiency of mutual funds," DES - Working Papers. Statistics and Econometrics. WS ws1517, Universidad Carlos III de Madrid. Departamento de Estadística.
    42. Zheng, Xiaoyong, 2008. "Semiparametric Bayesian estimation of mixed count regression models," Economics Letters, Elsevier, vol. 100(3), pages 435-438, September.
    43. Cem Çakmakli, 2012. "Bayesian Semiparametric Dynamic Nelson-Siegel Model," Working Paper series 59_12, Rimini Centre for Economic Analysis, revised Sep 2012.
    44. Kien C. Tran & Mike G. Tsionas & Emmanuel Mamatzakis, 2020. "Why fully efficient banks matter? A nonparametric stochastic frontier approach in the presence of fully efficient banks," Empirical Economics, Springer, vol. 58(6), pages 2733-2760, June.
    45. Abhijoy Saha & Sebastian Kurtek, 2019. "Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 104-143, February.

Articles

  1. Kalli, Maria & Griffin, Jim E., 2018. "Bayesian nonparametric vector autoregressive models," Journal of Econometrics, Elsevier, vol. 203(2), pages 267-282.

    Cited by:

    1. Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Bayesian Modeling of Time-Varying Parameters Using Regression Trees," Working Papers 23-05, Federal Reserve Bank of Cleveland.
    2. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
    3. Casarin Roberto & Peruzzi Antonio, 2024. "A Dynamic Latent-Space Model for Asset Clustering," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 379-402, April.
    4. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    5. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    6. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
    7. Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2022. "Bayesian Modeling of TVP-VARs Using Regression Trees," Papers 2209.11970, arXiv.org, revised May 2023.
    8. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    9. Petrova, Katerina, 2022. "Asymptotically valid Bayesian inference in the presence of distributional misspecification in VAR models," Journal of Econometrics, Elsevier, vol. 230(1), pages 154-182.
    10. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    11. Matthew Heiner & Athanasios Kottas, 2022. "Autoregressive density modeling with the Gaussian process mixture transition distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 157-177, March.
    12. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    13. Nguyen Ngoc Thach & Bui Hoang Ngoc, 2021. "Impact of Economic Freedom on Corruption Revisited in ASEAN Countries: A Bayesian Hierarchical Mixed-Effects Analysis," Economies, MDPI, vol. 9(1), pages 1-16, January.
    14. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    15. Florian Huber & Massimiliano Marcellino, 2023. "Coarsened Bayesian VARs -- Correcting BVARs for Incorrect Specification," Papers 2304.07856, arXiv.org, revised May 2023.
    16. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.

  2. Sakaria, D.K. & Griffin, J.E., 2017. "On efficient Bayesian inference for models with stochastic volatility," Econometrics and Statistics, Elsevier, vol. 3(C), pages 23-33.

    Cited by:

    1. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.

  3. Jim E. Griffin & Fabrizio Leisen, 2017. "Compound random measures and their use in Bayesian non-parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 525-545, March.

    Cited by:

    1. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    2. Riva Palacio, Alan & Leisen, Fabrizio, 2018. "Integrability conditions for compound random measures," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 32-37.
    3. Jim Griffin & Maria Kalli & Mark Steel, 2018. "Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 207-218, June.
    4. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    5. Camerlenghi, Federico & Lijoi, Antonio & Prünster, Igor, 2017. "Bayesian prediction with multiple-samples information," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 18-28.

  4. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.

    Cited by:

    1. Puxin Liu, 2023. "An assessment of financial mechanisms for green financial recovery and climate change mitigation: the case of China," Economic Change and Restructuring, Springer, vol. 56(3), pages 1567-1584, June.
    2. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    3. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    4. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    5. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    6. Jim Griffin & Maria Kalli & Mark Steel, 2018. "Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 207-218, June.
    7. Yinqiao Li, 2023. "Role of banking sector in green economic growth: empirical evidence from South Asian economies," Economic Change and Restructuring, Springer, vol. 56(4), pages 2437-2454, August.

  5. Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.

    Cited by:

    1. Koop, Gary & Korobilis, Dimitris, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," MPRA Paper 87972, University Library of Munich, Germany.
    2. Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
    3. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
    4. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    5. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    6. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    7. Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
    8. Niko Hauzenberger & Florian Huber & Gary Koop, 2020. "Dynamic Shrinkage Priors for Large Time-varying Parameter Regressions using Scalable Markov Chain Monte Carlo Methods," Papers 2005.03906, arXiv.org, revised May 2023.
    9. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    10. Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Florian Huber & Gregor Kastner & Martin Feldkircher, 2019. "Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 621-640, August.
    12. Sifat, Imtiaz & Zarei, Alireza & Hosseini, Seyedmehdi & Bouri, Elie, 2022. "Interbank liquidity risk transmission to large emerging markets in crisis periods," International Review of Financial Analysis, Elsevier, vol. 82(C).
    13. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    14. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
    15. Bakerman, Jordan & Pazdernik, Karl & Korkmaz, Gizem & Wilson, Alyson G., 2022. "Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest," International Journal of Forecasting, Elsevier, vol. 38(2), pages 648-661.
    16. Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
    17. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    18. Huber, Florian & Kastner, Gregor & Feldkircher, Martin, 2016. "Should I stay or should I go? Bayesian inference in the threshold time varying parameter (TTVP) model," Department of Economics Working Paper Series 235, WU Vienna University of Economics and Business.
    19. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    20. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    21. Korobilis, D, 2017. "Forecasting with many predictors using message passing algorithms," Essex Finance Centre Working Papers 19565, University of Essex, Essex Business School.
    22. Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
    23. Sylvia Fruhwirth-Schnatter & Peter Knaus, 2022. "Sparse Bayesian State-Space and Time-Varying Parameter Models," Papers 2207.12147, arXiv.org.
    24. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    25. Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org.
    26. Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
    27. Nikita Moiseev & Aleksander Sorokin & Natalya Zvezdina & Alexey Mikhaylov & Lyubov Khomyakova & Mir Sayed Shah Danish, 2021. "Credit Risk Theoretical Model on the Base of DCC-GARCH in Time-Varying Parameters Framework," Mathematics, MDPI, vol. 9(19), pages 1-12, September.
    28. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    29. Dufays, A. & Rombouts, V., 2015. "Sparse Change-Point Time Series Models," LIDAM Discussion Papers CORE 2015032, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.

  6. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.

    Cited by:

    1. Antonio Lijoi & Bernardo Nipoti, 2014. "A Class of Hazard Rate Mixtures for Combining Survival Data From Different Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 802-814, June.
    2. Matteo Ruggiero & Matteo Sordello, 2018. "Clustering dynamics in a class of normalised generalised gamma dependent priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 83-98, February.
    3. Stefano Favaro & Antonio Lijoi & Igor Prunster, 2011. "Asymptotics for a Bayesian nonparametric estimator of species richness," Quaderni di Dipartimento 144, University of Pavia, Department of Economics and Quantitative Methods.
    4. Antonio Lijoi & Bernardo Nipoti, 2013. "A class of hazard rate mixtures for combining survival data from different experiments," DEM Working Papers Series 059, University of Pavia, Department of Economics and Management.
    5. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    6. Jim E. Griffin & Fabrizio Leisen, 2017. "Compound random measures and their use in Bayesian non-parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 525-545, March.
    7. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2016. "Random density functions with common atoms and pairwise dependence," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 236-249.
    8. Hatjispyros, Spyridon J. & Merkatas, Christos & Nicoleris, Theodoros & Walker, Stephen G., 2018. "Dependent mixtures of geometric weights priors," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 1-18.

  7. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.

    Cited by:

    1. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    2. Lopes, Hedibert F., 2014. "Particle learning for Bayesian non-parametric Markov Switching Stochastic Volatility model," DES - Working Papers. Statistics and Econometrics. WS ws142819, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Mark J. Jensen & John M. Maheu, 2014. "Risk, Return, and Volatility Feedback: A Bayesian Nonparametric Analysis," FRB Atlanta Working Paper 2014-6, Federal Reserve Bank of Atlanta.
    4. Li, Chenxing & Maheu, John M & Yang, Qiao, 2022. "An Infinite Hidden Markov Model with Stochastic Volatility," MPRA Paper 115456, University Library of Munich, Germany.
    5. Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
    6. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    7. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    8. Jim Griffin & Maria Kalli & Mark Steel, 2018. "Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 207-218, June.
    9. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    10. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
    11. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    12. Mao, Xiuping & Ruiz, Esther & Veiga, Helena, 2017. "Threshold stochastic volatility: Properties and forecasting," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1105-1123.

  8. J. E. Griffin & P. J. Brown, 2012. "Structuring shrinkage: some correlated priors for regression," Biometrika, Biometrika Trust, vol. 99(2), pages 481-487.

    Cited by:

    1. P. Richard Hahn & Carlos M. Carvalho, 2015. "Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 435-448, March.
    2. Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.

  9. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.

    Cited by:

    1. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    2. Nicolas Huth & Frédéric Abergel, 2011. "High Frequency Lead/lag Relationships - Empirical facts," Working Papers hal-00645685, HAL.
    3. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    4. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    5. Kim Christensen & Charlotte Christiansen & Anders M. Posselt, 2019. "The Economic Value of VIX ETPs," CREATES Research Papers 2019-14, Department of Economics and Business Economics, Aarhus University.
    6. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    7. Seifoddini , Jalal & Rahnamay Roodposhti , Fraydoon & Nikoomaram , Hashem, 2015. "Parametric Estimates of High Frequency Market Microstructure Noise as an Unsystematic Risk," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(4), pages 29-50, October.
    8. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    9. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    10. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 591-616, September.
    11. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    12. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    13. Xin Jin & Jia Liu & Qiao Yang, 2021. "Does the Choice of Realized Covariance Measures Empirically Matter? A Bayesian Density Prediction Approach," Econometrics, MDPI, vol. 9(4), pages 1-22, December.
    14. Hautsch, Nikolaus & Kyj, Lada M. & Oomen, Roel C.A., 2009. "A blocking and regularization approach to high dimensional realized covariance estimation," SFB 649 Discussion Papers 2009-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Nolte, Ingmar & Voev, Valeri, 2007. "Estimating high-frequency based (co-) variances: A unified approach," CoFE Discussion Papers 07/07, University of Konstanz, Center of Finance and Econometrics (CoFE).
    16. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    17. Mark Podolskij & Mathias Vetter, 2007. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," CREATES Research Papers 2007-27, Department of Economics and Business Economics, Aarhus University.
    18. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    19. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    20. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Papers 2008-W10, Economics Group, Nuffield College, University of Oxford.
    21. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    22. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    23. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    24. Ruwei Zhao & Xiong Xiong & Dehua Shen & Wei Zhang, 2019. "Investor Structure and Stock Price Crash Risk in a Continuous Double Auction Market: An Agent-Based Perspective," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 695-715, March.
    25. Lidan Grossmass, 2014. "Obtaining and Predicting the Bounds of Realized Correlations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 191-226, September.
    26. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    27. Beetsma, Roel & de Jong, Frank & Giuliodori, Massimo & Widijanto, Daniel, 2014. "The Impact of News and the SMP on Realized (Co)Variances in the Eurozone Sovereign Debt Market," CEPR Discussion Papers 9803, C.E.P.R. Discussion Papers.
    28. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," EconomiX Working Papers 2019-19, University of Paris Nanterre, EconomiX.
    29. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    30. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    31. Taro Kanatani, 2007. "Finite Sample Analysis of Weighted Realized Covariance with Noisy Asynchronous Observations," KIER Working Papers 634, Kyoto University, Institute of Economic Research.
    32. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
    33. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
    34. Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
    35. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.
    36. Nicolas Huth & Fr'ed'eric Abergel, 2011. "High Frequency Lead/lag Relationships - Empirical facts," Papers 1111.7103, arXiv.org, revised Jan 2012.
    37. Habib Hasnaoui, 2014. "Alternative Beta Risk Estimators in Emerging Markets: The Case of Tunisia," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 2(2), pages 96-105.
    38. Bannouh, K. & van Dijk, D.J.C. & Martens, M.P.E., 2008. "Range-based covariance estimation using high-frequency data: The realized co-range," Econometric Institute Research Papers EI 2007-53, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    39. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    40. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    41. Beetsma, Roel & de Jong, Frank & Giuliodori, Massimo & Widijanto, Daniel, 2017. "Realized (co)variances of eurozone sovereign yields during the crisis: The impact of news and the Securities Markets Programme," Journal of International Money and Finance, Elsevier, vol. 75(C), pages 14-31.
    42. Chelley-Steeley, Patricia L. & Steeley, James M., 2014. "Portfolio size, non-trading frequency and portfolio return autocorrelation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 56-77.
    43. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Using the Epps effect to detect discrete processes," Papers 2005.10568, arXiv.org, revised Oct 2021.
    44. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," Working Papers hal-04141868, HAL.
    45. Maria Elvira Mancino & Simona Sanfelici, 2011. "Covariance Estimation and Dynamic Asset-Allocation under Microstructure Effects via Fourier Methodology," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures, chapter 1, pages 3-32, Palgrave Macmillan.
    46. Bannouh, K. & Martens, M.P.E. & Oomen, R.C.A. & van Dijk, D.J.C., 2012. "Realized mixed-frequency factor models for vast dimensional covariance estimation," ERIM Report Series Research in Management ERS-2012-017-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    47. Dieter Hendricks, 2016. "Using real-time cluster configurations of streaming asynchronous features as online state descriptors in financial markets," Papers 1603.06805, arXiv.org, revised May 2017.
    48. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
    49. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," LSE Research Online Documents on Economics 88375, London School of Economics and Political Science, LSE Library.
    50. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," Journal of Econometrics, Elsevier, vol. 206(1), pages 226-257.
    51. Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
    52. Taro Kanatani & Roberto Reno', 2007. "Unbiased covariance estimation with interpolated data," Department of Economics University of Siena 502, Department of Economics, University of Siena.
    53. Fulvio Corsi & Francesco Audrino, 2007. "Realized Correlation Tick-by-Tick," University of St. Gallen Department of Economics working paper series 2007 2007-02, Department of Economics, University of St. Gallen.

  10. J. E. Griffin, 2011. "Inference in Infinite Superpositions of Non-Gaussian Ornstein--Uhlenbeck Processes Using Bayesian Nonparametic Methods," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 519-549, Summer.

    Cited by:

    1. Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.
    2. Behme, Anita & Chong, Carsten & Klüppelberg, Claudia, 2015. "Superposition of COGARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1426-1469.
    3. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    4. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Federico Bassetti & Roberto Casarin & Fabrizio Leisen, 2013. "Beta-Product Dependent Pitman-Yor Processes for Bayesian Inference," Working Papers 2013:13, Department of Economics, University of Venice "Ca' Foscari".
    6. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    7. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.

  11. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.

    Cited by:

    1. Deng, Yaguo, 2024. "A Bayesian semi-parametric approach to stochastic frontier models with inefficiency heterogeneity," DES - Working Papers. Statistics and Econometrics. WS 43837, Universidad Carlos III de Madrid. Departamento de Estadística.

  12. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.

    Cited by:

    1. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    2. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    3. Jensen, Mark J. & Maheu, John M., 2014. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
    4. Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," Working Paper series 19_14, Rimini Centre for Economic Analysis.
    5. Li, Chenxing & Maheu, John M & Yang, Qiao, 2022. "An Infinite Hidden Markov Model with Stochastic Volatility," MPRA Paper 115456, University Library of Munich, Germany.
    6. Casarin Roberto & Peruzzi Antonio, 2024. "A Dynamic Latent-Space Model for Asset Clustering," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 379-402, April.
    7. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    8. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    9. Luis E. Nieto-Barajas & Peter Müller & Yuan Ji & Yiling Lu & Gordon B. Mills, 2012. "A Time-Series DDP for Functional Proteomics Profiles," Biometrics, The International Biometric Society, vol. 68(3), pages 859-868, September.
    10. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    11. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    12. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
    13. De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    14. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    15. Jim Griffin & Maria Kalli & Mark Steel, 2018. "Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 207-218, June.
    16. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    17. Casarin, Roberto & Costola, Michele, 2019. "Structural changes in large economic datasets: A nonparametric homogeneity test," Economics Letters, Elsevier, vol. 176(C), pages 55-59.
    18. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Yong Song, 2014. "Modelling Regime Switching And Structural Breaks With An Infinite Hidden Markov Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 825-842, August.
    20. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    21. Kurtis Shuler & Samuel Verbanic & Irene A. Chen & Juhee Lee, 2021. "A Bayesian nonparametric analysis for zero‐inflated multivariate count data with application to microbiome study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 961-979, August.
    22. Minkun Kim & David Lindberg & Martin Crane & Marija Bezbradica, 2023. "Dirichlet Process Log Skew-Normal Mixture with a Missing-at-Random-Covariate in Insurance Claim Analysis," Econometrics, MDPI, vol. 11(4), pages 1-32, October.
    23. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    24. Federico Bassetti & Roberto Casarin & Fabrizio Leisen, 2013. "Beta-Product Dependent Pitman-Yor Processes for Bayesian Inference," Working Papers 2013:13, Department of Economics, University of Venice "Ca' Foscari".
    25. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    26. Isadora Antoniano-Villalobos & Stephen G. Walker, 2016. "A Nonparametric Model for Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 126-142, January.
    27. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.

  13. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.

    Cited by:

    1. Stefano Favaro & Antonio Lijoi & Igor Prunster, 2011. "Asymptotics for a Bayesian nonparametric estimator of species richness," Quaderni di Dipartimento 144, University of Pavia, Department of Economics and Quantitative Methods.
    2. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A new estimator of the discovery probability," DEM Working Papers Series 007, University of Pavia, Department of Economics and Management.
    3. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A New Estimator of the Discovery Probability," Biometrics, The International Biometric Society, vol. 68(4), pages 1188-1196, December.

  14. Griffin, J.E. & Steel, M.F.J., 2010. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2594-2608, November. See citations under working paper version above.
  15. Jim Griffin & Roel Oomen, 2008. "Sampling Returns for Realized Variance Calculations: Tick Time or Transaction Time?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 230-253.

    Cited by:

    1. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    2. Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," Energy Economics, Elsevier, vol. 81(C), pages 639-649.
    3. Gael M. Martin & Andrew Reidy & Jill Wright, 2006. "Assessing the Impact of Market Microstructure Noise and Random Jumps on the Relative Forecasting Performance of Option-Implied and Returns-Based Volatility," Monash Econometrics and Business Statistics Working Papers 10/06, Monash University, Department of Econometrics and Business Statistics.
    4. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    5. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    6. Bannouh, Karim & Martens, Martin & van Dijk, Dick, 2013. "Forecasting volatility with the realized range in the presence of noise and non-trading," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 535-551.
    7. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    8. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "The Epps effect under alternative sampling schemes," Papers 2011.11281, arXiv.org, revised Aug 2021.
    9. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    10. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    11. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
    12. Vuorenmaa, Tommi A., 2008. "Decimalization, Realized Volatility, and Market Microstructure Noise," MPRA Paper 8692, University Library of Munich, Germany.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    14. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    16. Charles S. Bos & Pawel Janus, 2013. "A Quantile-based Realized Measure of Variation: New Tests for Outlying Observations in Financial Data," Tinbergen Institute Discussion Papers 13-155/III, Tinbergen Institute.
    17. Chang, Patrick & Pienaar, Etienne & Gebbie, Tim, 2021. "The Epps effect under alternative sampling schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    18. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    19. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    20. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    21. Hsieh Fushing & Shu-Chun Chen & Chii-Ruey Hwang, 2012. "Discovering stock dynamics through multidimensional volatility phases," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 213-230, September.
    22. Yacine Ait-Sahalia & Jianqing Fan & Yingying Li, 2011. "The Leverage Effect Puzzle: Disentangling Sources of Bias at High Frequency," NBER Working Papers 17592, National Bureau of Economic Research, Inc.
    23. Yacine Ait-Sahalia & Per A. Mykland & Lan Zhang, 2005. "Ultra High Frequency Volatility Estimation with Dependent Microstructure Noise," NBER Working Papers 11380, National Bureau of Economic Research, Inc.
    24. István Barra & Agnieszka Borowska & Siem Jan Koopman, 2018. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 384-424.
    25. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    26. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
    27. Ilia Negri & Yoichi Nishiyama, 2010. "Goodness of fit test for ergodic diffusions by tick time sample scheme," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 81-95, April.
    28. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    29. Su, Fei & Wang, Xinyi & Yuan, Yulin, 2022. "The intraday dynamics and intraday price discovery of bitcoin," Research in International Business and Finance, Elsevier, vol. 60(C).
    30. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    31. Ilia Negri & Yoichi Nishiyama, 2010. "Review on Goodness of Fit Tests for Ergodic Diffusion Processes by Different Sampling Schemes," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 91-106, February.
    32. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.
    33. Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
    34. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
    35. Henker, Thomas & Husodo, Zaäfri A., 2010. "Noise and efficient variance in the Indonesia Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 199-216, April.
    36. Henao-Londono, Juan C. & Guhr, Thomas, 2022. "Foreign exchange markets: Price response and spread impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    37. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    38. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

  16. J. Griffin & M. Steel, 2008. "Flexible mixture modelling of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 29(1), pages 33-50, February.

    Cited by:

    1. Antony Andrews & Omphile Temoso & Sean Kimpton, 2021. "Persistent and Transient Inefficiency of Australian States and Territories in Providing Public Hospital Services: An Application of Bayesian Stochastic Finite Mixture Frontier Analysis," Economic Papers, The Economic Society of Australia, vol. 40(2), pages 104-115, June.
    2. Gholamreza Hajargasht & William E. Griffiths, 2016. "Estimation and Testing of Stochastic Frontier Models using Variational Bayes," Department of Economics - Working Papers Series 2024, The University of Melbourne.
    3. Alecos Papadopoulos & Christopher F. Parmeter, 2024. "The wrong skewness problem in stochastic frontier analysis: a review," Journal of Productivity Analysis, Springer, vol. 61(2), pages 121-134, April.
    4. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    5. Deng, Yaguo, 2024. "A Bayesian semi-parametric approach to stochastic frontier models with inefficiency heterogeneity," DES - Working Papers. Statistics and Econometrics. WS 43837, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    7. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    8. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    9. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    10. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    11. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    12. Gholamreza Hajargasht, 2015. "Stochastic frontiers with a Rayleigh distribution," Journal of Productivity Analysis, Springer, vol. 44(2), pages 199-208, October.
    13. Pirayesh Neghab, Davood & Bradrania, Reza & Elliott, Robert, 2023. "Deliberate premarket underpricing: New evidence on IPO pricing using machine learning," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 902-927.
    14. Cheol-Keun Cho & Peter Schmidt, 2020. "The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables," Empirical Economics, Springer, vol. 58(5), pages 2031-2047, May.
    15. Misgan Desale Nigusie, 2024. "Normal-beta exponential stochastic frontier model: Maximum simulated likelihood approach," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(3), pages 489-504, September.
    16. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    17. Tonini, Axel & Matus, Silvia Saravia & Gomez y Paloma, Sergio, 2011. "A Bayesian Total Factor Productivity Analysis of Tropical Agricultural Systems in Central-Western Africa And South-East Asia," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 116088, European Association of Agricultural Economists.
    18. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2012. "Bayesian estimation approaches to first-price auctions," Journal of Econometrics, Elsevier, vol. 168(1), pages 47-59.

  17. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    See citations under working paper version above.
  18. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.

    Cited by:

    1. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    2. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    3. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    4. Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," Working Paper series 19_14, Rimini Centre for Economic Analysis.
    5. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    6. Griffin, J.E. & Steel, M.F.J., 2010. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2594-2608, November.
    7. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    8. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    9. Shibin Zhang & Xinsheng Zhang, 2008. "Exact Simulation of IG-OU Processes," Methodology and Computing in Applied Probability, Springer, vol. 10(3), pages 337-355, September.
    10. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    11. Fasen, Vicky, 2013. "Statistical estimation of multivariate Ornstein–Uhlenbeck processes and applications to co-integration," Journal of Econometrics, Elsevier, vol. 172(2), pages 325-337.
    12. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    13. Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
    14. Friedrich Hubalek & Petra Posedel, 2008. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3464, arXiv.org, revised Oct 2008.
    15. Mehrdoust, Farshid & Noorani, Idin & Kanniainen, Juho, 2024. "Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 228-269.
    16. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    18. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
    19. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    20. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    21. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    22. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    23. Sylvia Frühwirth-Schnatter & Leopold Sögner, 2009. "Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 159-179, March.
    24. S. C. Kou & X. Sunney Xie & Jun S. Liu, 2005. "Bayesian analysis of single‐molecule experimental data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 469-506, June.
    25. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    26. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.

  19. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.

    Cited by:

    1. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
    2. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    3. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    4. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    5. Tsuyoshi Kunihama & David B. Dunson, 2013. "Bayesian Modeling of Temporal Dependence in Large Sparse Contingency Tables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1324-1338, December.
    6. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    7. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    8. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    9. Pelenis, Justinas, 2014. "Bayesian regression with heteroscedastic error density and parametric mean function," Journal of Econometrics, Elsevier, vol. 178(P3), pages 624-638.
    10. Tchumtchoua, Sylvie & Dey, Dipak, 2007. "Semiparametric Bayesian Estimation of Random Coefficients Discrete Choice Models," Research Reports 149208, University of Connecticut, Food Marketing Policy Center.
    11. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    12. Pereira, Luz Adriana & Gutiérrez, Luis & Taylor-Rodríguez, Daniel & Mena, Ramsés H., 2023. "Bayesian nonparametric hypothesis testing for longitudinal data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Antonio Lijoi & Bernardo Nipoti, 2014. "A Class of Hazard Rate Mixtures for Combining Survival Data From Different Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 802-814, June.
    14. Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
    15. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2011. "Dependent mixtures of Dirichlet processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2011-2025, June.
    16. Navarrete, Carlos A. & Quintana, Fernando A., 2011. "Similarity analysis in Bayesian random partition models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 97-109, January.
    17. Luis E. Nieto-Barajas & Peter Müller & Yuan Ji & Yiling Lu & Gordon B. Mills, 2012. "A Time-Series DDP for Functional Proteomics Profiles," Biometrics, The International Biometric Society, vol. 68(3), pages 859-868, September.
    18. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    19. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    20. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
    21. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
    22. Chiara Perricone, 2013. "Clustering Macroeconomic Variables," CEIS Research Paper 283, Tor Vergata University, CEIS, revised 11 Jun 2013.
    23. Antonio Lijoi & Bernardo Nipoti, 2013. "A class of hazard rate mixtures for combining survival data from different experiments," DEM Working Papers Series 059, University of Pavia, Department of Economics and Management.
    24. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    25. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    26. Michael L. Pennell & David B. Dunson, 2008. "Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor," Biometrics, The International Biometric Society, vol. 64(2), pages 413-423, June.
    27. Ilenia Epifani & Antonio Lijoi, 2009. "Nonparametric Priors for Vectors of Survival Functions," Quaderni di Dipartimento 098, University of Pavia, Department of Economics and Quantitative Methods.
    28. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    29. Sara Wade & Stephen G. Walker & Sonia Petrone, 2014. "A Predictive Study of Dirichlet Process Mixture Models for Curve Fitting," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 580-605, September.
    30. González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.
    31. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    32. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    33. Trippa, Lorenzo & Muliere, Pietro, 2009. "Bayesian nonparametric binary regression via random tessellations," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2273-2280, November.
    34. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2016. "Random density functions with common atoms and pairwise dependence," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 236-249.
    35. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    36. Brian J. Reich & Howard D. Bondell & Lexin Li, 2011. "Sufficient Dimension Reduction via Bayesian Mixture Modeling," Biometrics, The International Biometric Society, vol. 67(3), pages 886-895, September.
    37. Jeong, Kuhwan & Chae, Minwoo & Kim, Yongdai, 2023. "Online learning for the Dirichlet process mixture model via weakly conjugate approximation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    38. Miller, Jeffrey W., 2019. "An elementary derivation of the Chinese restaurant process from Sethuraman’s stick-breaking process," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 112-117.
    39. Yeonseung Chung & David Dunson, 2011. "The local Dirichlet process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 59-80, February.
    40. Minkun Kim & David Lindberg & Martin Crane & Marija Bezbradica, 2023. "Dirichlet Process Log Skew-Normal Mixture with a Missing-at-Random-Covariate in Insurance Claim Analysis," Econometrics, MDPI, vol. 11(4), pages 1-32, October.
    41. Pelenis, Justinas, 2012. "Bayesian Semiparametric Regression," Economics Series 285, Institute for Advanced Studies.
    42. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    43. Hatjispyros, Spyridon J. & Merkatas, Christos & Nicoleris, Theodoros & Walker, Stephen G., 2018. "Dependent mixtures of geometric weights priors," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 1-18.
    44. Federico Bassetti & Roberto Casarin & Fabrizio Leisen, 2013. "Beta-Product Dependent Pitman-Yor Processes for Bayesian Inference," Working Papers 2013:13, Department of Economics, University of Venice "Ca' Foscari".
    45. Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
    46. Brian J. Reich & Dipankar Bandyopadhyay & Howard D. Bondell, 2013. "A Nonparametric Spatial Model for Periodontal Data With Nonrandom Missingness," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 820-831, September.
    47. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    48. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
    49. Isadora Antoniano-Villalobos & Stephen G. Walker, 2016. "A Nonparametric Model for Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 126-142, January.
    50. Richard Gerlach & Zudi Lu & Hai Huang, 2013. "Exponentially Smoothing the Skewed Laplace Distribution for Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 534-550, September.
    51. Maria De Iorio & Wesley O. Johnson & Peter Müller & Gary L. Rosner, 2009. "Bayesian Nonparametric Nonproportional Hazards Survival Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 762-771, September.
    52. Leisen, Fabrizio, 2013. "A multivariate extension of a vector of Poisson- Dirichlet processes," DES - Working Papers. Statistics and Econometrics. WS ws132220, Universidad Carlos III de Madrid. Departamento de Estadística.

  20. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    See citations under working paper version above.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.